About this document

Escherichia coli and Salmonella is the bible of microbiology. It contains data daily used by many researchers. The chapter 139 (Mutant Selections Linking Physiology, Inhibitors, and Genotypes), by Robert A. LaRossa, contains two famous tables listing all genes for which a positive or negative selection has been reported in the litterature. While a pdf is available from ASM, its format makes it hard to use. Moreover it contains small mistakes that could easily be corrected (eg typos in the reference table). Eventually academics may want to collectively keep updating these tables with more recent litterature.

For these reasons, I extracted the two tables from the pdf and created this easily parsable and updatable webpage, with links between gene names and EcoCyc, and between reference number and full bibliographic information (including a pdf when available).

The raw data can also be downloaded as csv files:

And importantly, anybody can contribute to this document!

Selections giving rise to mutants of E. coli and S. typhimurium

Selection purpose and techniqueMutant gene Type
Acetate + gluconate as C source in ppcgntR Expansion of metabolic capacity
Acetate + gluconate as C source in ppcgntS Expansion of metabolic capacity
Acetyl(N)histidine + ornithine satisfaction of hisargB Expansion of metabolic capacity
Acetyl(N)histidine + ornithine satisfaction of hisargC Expansion of metabolic capacity
Acetyl(N)histidine + ornithine satisfaction of hisargE Expansion of metabolic capacity
Acetyl(N)histidine + ornithine satisfaction of hisargH Expansion of metabolic capacity
Acetylhistidine satisfaction of hisargR Expansion of metabolic capacity
Acetyl(N)lactonate as sole N source lacI, operator Expansion of metabolic capacity
Acetylmethionine satisfaction of metargR Expansion of metabolic capacity
Acetylornithine + uracil satisfaction of car (pyrA)argA Expansion of metabolic capacity
Acetylornithine + uracil satisfaction of car (pyrA)argB Expansion of metabolic capacity
Acetylornithine + uracil satisfaction of car (pyrA)argC Expansion of metabolic capacity
Acetylornithine + uracil satisfaction of car (pyrA)argD Expansion of metabolic capacity
Adenosine as C source in upp deoDxapR Expansion of metabolic capacity
Aminobutyrate as N sourcegabC Expansion of metabolic capacity
Arabinitol (D) resistancemtlA Expansion of metabolic capacity
Arabinose (L) as C source in cya or crprpoD Expansion of metabolic capacity
Arabinose (L) as C source in presence of lac operon inducerlacY Expansion of metabolic capacity
Arabinose (D) as C sourcefucA Expansion of metabolic capacity
Arabitol as C sourcegatACD Expansion of metabolic capacity
Arabitol (D) as C source in fucdgd Expansion of metabolic capacity
Arbutin as a C sourcebglBC Expansion of metabolic capacity
Arbutin as C source)osmZ (bglY) Expansion of metabolic capacity
Arginine as N sourcehisP Expansion of metabolic capacity
Arginine-independent growth of pyrH in presence of uracilpyrB Expansion of metabolic capacity
Arginine-independent growth of pyrH in presence of uracilpyrC Expansion of metabolic capacity
Arginine-independent growth of pyrH in presence of uracilpyrD Expansion of metabolic capacity
Arginine-resistant, proline-independent growth of ∆proargR Expansion of metabolic capacity
β-Glycerol-phosphate as C source in presence of high phosphatephoA Expansion of metabolic capacity
β-Glycerol-phosphate as C source in presence of high phosphatephoR Expansion of metabolic capacity
β-Glycerol-phosphate as C source in presence of high phosphatephoS Expansion of metabolic capacity
β-Glycerol-phosphate as C source in presence of high phosphatephoT Expansion of metabolic capacity
Biotin sulfoxide utilization in chl biochlE Expansion of metabolic capacity
Branched-chain amino acid satisfaction of ∆ilvDC hisTilvA Expansion of metabolic capacity
Butyrate as C source in fadR(Con)atoC Expansion of metabolic capacity
Butyrate or valerate as better C sourceiclR Expansion of metabolic capacity
Cellobiose as C sourcecelABCDF Expansion of metabolic capacity
Chemostat growth improvedmut Expansion of metabolic capacity
Citrate as C sourcecit Expansion of metabolic capacity
Citrate as C source in presence of low cAMPcpd Expansion of metabolic capacity
D-Amino acid satisfaction of amino acid auxotrophydadA Expansion of metabolic capacity
DAP-independent growth of ∆(mal-asd) in the presence of serine, methionine,and glycine D-Histidine + glycylglutamine satisfaction of his auxotrophsglnA Expansion of metabolic capacity
Decanoate as C sourcefadR Expansion of metabolic capacity
Deoxyadenosine (low) satisfaction of purine requirementadd Expansion of metabolic capacity
Deoxyadenosine + hypoxanthine satisfaction of purine requirementadd Expansion of metabolic capacity
Diamino (2,6)purine satisfaction of purine auxotrophydeoR Expansion of metabolic capacity
Erythromycin growth dependencemac Expansion of metabolic capacity
Ethanol as C sourceadh Expansion of metabolic capacity
Ethyleneglycol as C source in propanediol utilizerfucA Expansion of metabolic capacity
Fructose as C source in ptsF or ptsMsrlD Expansion of metabolic capacity
Fructose 1-phosphate as C sourceuhpR Expansion of metabolic capacity
Fucose (L) as C source in propanediol utilizerfucA Expansion of metabolic capacity
Fucose + arabinose-supported growth in galPmglA Expansion of metabolic capacity
Fucose + arabinose-supported growth in galPmglB Expansion of metabolic capacity
Fucose + arabinose-supported growth in galPmglC Expansion of metabolic capacity
Galactose as C source for gal (leader)::ISrho Expansion of metabolic capacity
Galacturonide as C sourceuidA Expansion of metabolic capacity
Galacturonide as C sourceuidR Expansion of metabolic capacity
Glucanate as C source in edaedd Expansion of metabolic capacity
Glucosamine as C sourceptsG Expansion of metabolic capacity
Glucosamine 6-phosphate as C sourceuhpR Expansion of metabolic capacity
Glucosamine as anaerobic C source in ptsGdgsA Expansion of metabolic capacity
Glucose 1-phosphate as C sourceuhpR Expansion of metabolic capacity
Glucose as C source in ∆ptsHIgalC Expansion of metabolic capacity
Glucose as C source in ppciclR Expansion of metabolic capacity
Glucose as C source in ∆ptsHIgalR Expansion of metabolic capacity
Glucosides (β) as C sourcegyrA (hisU) Expansion of metabolic capacity
Glucosides (β) as C sourcegyrB (hisW) Expansion of metabolic capacity
Glutamate as C sourcegadS Expansion of metabolic capacity
Glutamate as C sourcegltH Expansion of metabolic capacity
Glutamate as C sourcegltS Expansion of metabolic capacity
Glutamate as C source at 42°CgltR Expansion of metabolic capacity
Glutamine as C sourceglnP Expansion of metabolic capacity
Glycerol as C source in ppciclR Expansion of metabolic capacity
Glycerol + gluconate as C source in edagntM Expansion of metabolic capacity
Glycerol + methylglucuronide as C source in edagurBCD Expansion of metabolic capacity
Glycerol 3-phosphate as C source in glpTugpAB Expansion of metabolic capacity
Hemin satisfaction of hemA auxotrophhemB Expansion of metabolic capacity
Hemin satisfaction of hemA auxotrophrfa Expansion of metabolic capacity
Hexuronate as C source in noninducible strainexuR Expansion of metabolic capacity
Histidinal satisfaction of his auxotroph requirement at 30°Chis structural genes Expansion of metabolic capacity
Histidinal satisfaction of his auxotroph requirement at 30°ChisG Expansion of metabolic capacity
Histidine (D) satisfaction of his auxotroph requirementhis structural genes Expansion of metabolic capacity
Histidine (D) satisfaction of his auxotroph requirementhisG Expansion of metabolic capacity
Histidine (D) satisfaction of his auxotroph requirementdhuA Expansion of metabolic capacity
Histidine as C sourcehut Expansion of metabolic capacity
Histidine as N sourcehut Expansion of metabolic capacity
Improved growth in icdgltA Expansion of metabolic capacity
Inosine as C source in upp deoDxapR Expansion of metabolic capacity
Inosine as improved C sourcedeoR Expansion of metabolic capacity
Keto(2)-3-deoxygalactonate as C sourcekdgR Expansion of metabolic capacity
Keto(2)-3-deoxygalactonate as C sourcedgoR Expansion of metabolic capacity
Lactate + fumarate as anaerobic energy sourcechlABDE Expansion of metabolic capacity
Lactate + nitrate as anaerobic energy source (chl to chl+)chlE Expansion of metabolic capacity
Lactitol as C sourcelacI, operator Expansion of metabolic capacity
Lactobionic acid as C sourcelacI, operator Expansion of metabolic capacity
Lactobionic acid as C sourcelacZ Expansion of metabolic capacity
Lactose utilization after conjugation of F′lac into Salmonella sp.hsd Expansion of metabolic capacity
Lactose utilization in ∆lacZebgA Expansion of metabolic capacity
Leucine (D) satisfaction of leu auxotrophslrp (livR, lstR, lss, mbl, oppl) Expansion of metabolic capacity
Lyxose (D) as C sourcemanC Expansion of metabolic capacity
Malate (L) as improved C sourcedct Expansion of metabolic capacity
Malate (D) as C sourcedml Expansion of metabolic capacity
Maltose as C source in malTmalP Expansion of metabolic capacity
Maltose as C source in malTmalQ Expansion of metabolic capacity
Maltose utilization in malTbymA Expansion of metabolic capacity
Mannitol (limiting) as C sourcemtlC Expansion of metabolic capacity
Mannose as C sourceptdG Expansion of metabolic capacity
Melibiose as C sourcelacI, operator Expansion of metabolic capacity
Melibiose as C source and acetyl(N)lactonate as N sourcelacI, operator Expansion of metabolic capacity
Methyl-β-galactoside-supported growthmglD Expansion of metabolic capacity
Methylgalacturonide as C sourceuidA Expansion of metabolic capacity
Methylgalacturonide as C sourceuidR Expansion of metabolic capacity
Methylgalacturonide as C sourceuxuR Expansion of metabolic capacity
Methyl(β)glucoside as C sourcebglT Expansion of metabolic capacity
Methylglucuronide + glycerol-supported growthuidA Expansion of metabolic capacity
Neolactose as C sourcelacI, operator Expansion of metabolic capacity
Nicotinamide as sole N sourcepncA Expansion of metabolic capacity
Phenylgalactoside as C sourcelacI, operator Expansion of metabolic capacity
Proline as sole N source with glucose as C sourceputA Expansion of metabolic capacity
Proline-independent growth of proABargD Expansion of metabolic capacity
Propanediol as C sourcefucA Expansion of metabolic capacity
Propionate as C sourceprp Expansion of metabolic capacity
Raffinose as C source in lacImel (generic) Expansion of metabolic capacity
Raffinose as C sourcelacI, operator Expansion of metabolic capacity
Ribitol utilizationgatACD Expansion of metabolic capacity
Salicin as C sourcebglB,C Expansion of metabolic capacity
Salicin as C sourceosmZ Expansion of metabolic capacity
Serine (L) as C sourcecpxA Expansion of metabolic capacity
Serine (L) as C sourceecfB Expansion of metabolic capacity
Sorbose (L) as C source in crosses with wild strainssorAT Expansion of metabolic capacity
Streptomycin independence of rpsLrpsD Expansion of metabolic capacity
Streptomycin independence of rpsLrpsE Expansion of metabolic capacity
Succinate as improved C sourcecpd Expansion of metabolic capacity
Succinate-independent growth in lpdsdh Expansion of metabolic capacity
Sucrose as C sourcedsdA Expansion of metabolic capacity
Sucrose as C sourcedsdC Expansion of metabolic capacity
Threonine as N sourceilvA Expansion of metabolic capacity
Tyramine as N sourcetyn Expansion of metabolic capacity
Uridine as C source, improved utilizationcytR Expansion of metabolic capacity
Valerate as C source in fadR(Con)atoC Expansion of metabolic capacity
Xylitol as C source in propanediol utilizerfucA Expansion of metabolic capacity
Acid resistanceatr Resistance to inorganic chemicals
Acid resistancephoE Resistance to inorganic chemicals
Arsenate resistanceglpT Resistance to inorganic chemicals
Arsenate resistancephoR Resistance to inorganic chemicals
Arsenate resistancephoS Resistance to inorganic chemicals
Arsenate resistancephoT Resistance to inorganic chemicals
Arsenate resistancepstABCS Resistance to inorganic chemicals
Arsenate resistancepit Resistance to inorganic chemicals
Azide resistanceatpA–atpE Resistance to inorganic chemicals
Azide resistancecysB Resistance to inorganic chemicals
Azide resistancecysK Resistance to inorganic chemicals
Azide resistancesecA Resistance to inorganic chemicals
Chlorate resistancechlABCDEG Resistance to inorganic chemicals
Chlorate resistancenarCG Resistance to inorganic chemicals
Chlorate resistancenarH Resistance to inorganic chemicals
Chromate + selenate resistancecysL Resistance to inorganic chemicals
Chromate resistancecysA Resistance to inorganic chemicals
Chromate resistancecysB Resistance to inorganic chemicals
Chromate resistancecysC Resistance to inorganic chemicals
Chromate resistancecysD Resistance to inorganic chemicals
Chromate resistancecysH Resistance to inorganic chemicals
Chromate resistancecysI Resistance to inorganic chemicals
Chromate resistancecysJ Resistance to inorganic chemicals
Copper resistance in ompCompF Resistance to inorganic chemicals
Copper resistanceompR Resistance to inorganic chemicals
Diazoborine resistanceenvM Resistance to inorganic chemicals
Lithium resistance (multicopy)nhaA Resistance to inorganic chemicals
Lithium-resistant utilization of melibiosemelB Resistance to inorganic chemicals
Manganese resistancecorABCD Resistance to inorganic chemicals
Manganese resistancefur Resistance to inorganic chemicals
Manganese resistancemng Resistance to inorganic chemicals
Nickel resistancecorABCD Resistance to inorganic chemicals
Osmotolerancecrp Resistance to inorganic chemicals
OsmotolerancecyaA Resistance to inorganic chemicals
OsmotoleranceosmB Resistance to inorganic chemicals
OsmotoleranceproA Resistance to inorganic chemicals
OsmotoleranceproB Resistance to inorganic chemicals
Peroxide resistanceoxyR Resistance to inorganic chemicals
Selenate resistancecysA Resistance to inorganic chemicals
Selenate resistancecysB Resistance to inorganic chemicals
Selenate resistance in cysMcysB Resistance to inorganic chemicals
Selenate resistancecysK Resistance to inorganic chemicals
Selenate resistancecysL Resistance to inorganic chemicals
Selenite resistancecysK Resistance to inorganic chemicals
Selenite resistancegshA Resistance to inorganic chemicals
Selenite resistancegshB Resistance to inorganic chemicals
Tellurite resistancephoB Resistance to inorganic chemicals
Tributyl tin resistanceatpA–atpE Resistance to inorganic chemicals
Acetylnorvaline resistance in argR(Con)argE Resistance to biological and organic chemicals
Acetylnorvaline resistance in argR(Con)argR Resistance to biological and organic chemicals
Acridine resistancednaE Resistance to biological and organic chemicals
Actinomycin D resistance in the presence of EDTApldA Resistance to biological and organic chemicals
Adenine resistance in hpt gptapt Resistance to biological and organic chemicals
Adenine resistance in hpt gptpurR Resistance to biological and organic chemicals
Alafosfalin resistancepepA Resistance to biological and organic chemicals
Alafosfalin resistancetpp Resistance to biological and organic chemicals
Alanyl-2-aminopropionate resistanceoppA Resistance to biological and organic chemicals
Albicidin resistancetsx Resistance to biological and organic chemicals
Albomycin resistanceexbB Resistance to biological and organic chemicals
Albomycin resistancefhuA Resistance to biological and organic chemicals
Albomycin resistancefhuB Resistance to biological and organic chemicals
Albomycin resistancepepN Resistance to biological and organic chemicals
Albomycin resistancesidCF Resistance to biological and organic chemicals
Albomycin resistancesidK Resistance to biological and organic chemicals
Albomycin resistancetonB Resistance to biological and organic chemicals
Aldohexuronate resistance in edaexuT Resistance to biological and organic chemicals
Aldohexuronate resistance in edaexuR Resistance to biological and organic chemicals
Allyl alcohol resistanceadhE Resistance to biological and organic chemicals
Amidinopenicillin tolerancesloB Resistance to biological and organic chemicals
Amikacin resistancecpxA Resistance to biological and organic chemicals
Amino(2)purine resistance in dammutH Resistance to biological and organic chemicals
Amino(2)purine resistance in dammutL Resistance to biological and organic chemicals
Amino(2)purine resistance in dammutS Resistance to biological and organic chemicals
Amino(4)phenylalanine resistancearoF Resistance to biological and organic chemicals
Amino(4)phenylalanine resistancetyrA Resistance to biological and organic chemicals
Amino(4)phenylalanine resistancetyrR Resistance to biological and organic chemicals
Amino(6)nicotinamide resistancenadA Resistance to biological and organic chemicals
Amino(6)nicotinamide resistancenadD Resistance to biological and organic chemicals
Amino(6)nicotinamide resistancepncA Resistance to biological and organic chemicals
Amino(6)nicotinamide resistancepncB Resistance to biological and organic chemicals
Amino(6)nicotinamide resistancepncX Resistance to biological and organic chemicals
Amino(6)nicotinate resistancepncB Resistance to biological and organic chemicals
Aminobutyrate resistanceilv structural genes Resistance to biological and organic chemicals
Aminobutyrate resistanceilvB Resistance to biological and organic chemicals
Aminobutyrate resistanceilvH Resistance to biological and organic chemicals
Aminobutyrate resistanceilvI Resistance to biological and organic chemicals
Aminoethylcysteine (thialysine) resistancelysC Resistance to biological and organic chemicals
Aminoethylcysteine (thialysine) resistancelysP Resistance to biological and organic chemicals
Aminoethylcysteine (thialysine) resistancelysS Resistance to biological and organic chemicals
Aminoglycoside resistancenek Resistance to biological and organic chemicals
Amino(2)hydroxy(3)pentoate resistancethr structural genes Resistance to biological and organic chemicals
Aminopterin resistancethyA Resistance to biological and organic chemicals
Aminotriazole resistanceamtA, amtB Resistance to biological and organic chemicals
Aminotriazole resistancehis structural genes Resistance to biological and organic chemicals
Aminotriazole resistance in relAgyrB Resistance to biological and organic chemicals
Ampicillin resistanceampC Resistance to biological and organic chemicals
Ampicillin resistanceampD Resistance to biological and organic chemicals
Ampicillin resistanceampE Resistance to biological and organic chemicals
Ampicillin resistanceenvZ Resistance to biological and organic chemicals
Ampicillin resistancegalU Resistance to biological and organic chemicals
Ampicillin resistancehipA Resistance to biological and organic chemicals
Ampicillin resistancehipQ Resistance to biological and organic chemicals
Ampicillin resistanceompC Resistance to biological and organic chemicals
Ampicillin resistanceompF Resistance to biological and organic chemicals
Ampicillin resistanceompR Resistance to biological and organic chemicals
Ampicillin resistanceptsI Resistance to biological and organic chemicals
Ampicillin resistancerfa (general) Resistance to biological and organic chemicals
Ampicillin resistancetolD Resistance to biological and organic chemicals
Ampicillin resistancetolE Resistance to biological and organic chemicals
Arabinitol (D) resistancemtlA Resistance to biological and organic chemicals
Arbitol (D) resistancegatACD Resistance to biological and organic chemicals
Arbutin resistance in dgkmdoB Resistance to biological and organic chemicals
Arginine-resistant, proline-independent growth of ∆proargR Resistance to biological and organic chemicals
Auroventin resistanceatpA–atpE Resistance to biological and organic chemicals
Aza(5)cytidine resistancedcm Resistance to biological and organic chemicals
Azadeoxycytidine resistancecdd Resistance to biological and organic chemicals
Aza(6)uracil resistancegpt Resistance to biological and organic chemicals
Aza(8)guanine resistancendk Resistance to biological and organic chemicals
Aza(8)guanine resistanceupp Resistance to biological and organic chemicals
Azaleucine resistancearoP Resistance to biological and organic chemicals
Azaleucine resistanceazl Resistance to biological and organic chemicals
Azaleucine resistancetolB Resistance to biological and organic chemicals
Azaleucine resistanceleuS Resistance to biological and organic chemicals
Azaleucine resistancelivG Resistance to biological and organic chemicals
Azaleucine resistancelivH Resistance to biological and organic chemicals
Azaserine + tryptophan resistancedhuA Resistance to biological and organic chemicals
Azaserine + tryptophan resistance in dhuAhisJ Resistance to biological and organic chemicals
Azaserine resistancearoP Resistance to biological and organic chemicals
Azaserine resistanceazaAB Resistance to biological and organic chemicals
Azaserine resistancecysA Resistance to biological and organic chemicals
Azaserine resistancecysB Resistance to biological and organic chemicals
Azaserine resistancecysC Resistance to biological and organic chemicals
Azaserine resistancecysD Resistance to biological and organic chemicals
Azaserine resistancecysE Resistance to biological and organic chemicals
Azaserine resistancecysG Resistance to biological and organic chemicals
Azaserine resistancecysH Resistance to biological and organic chemicals
Azaserine resistancecysI Resistance to biological and organic chemicals
Azaserine resistancecysJ Resistance to biological and organic chemicals
Azaserine resistancecysK Resistance to biological and organic chemicals
Azaserine resistancecysM Resistance to biological and organic chemicals
Azaserine resistancemut (generic) Resistance to biological and organic chemicals
Azetidine carboxylate resistanceproB Resistance to biological and organic chemicals
Azetidine carboxylate resistanceputA Resistance to biological and organic chemicals
Azetidine carboxylate resistanceputP Resistance to biological and organic chemicals
Azidothymidine resistancetdk Resistance to biological and organic chemicals
Bacilysin resistancedppA Resistance to biological and organic chemicals
Bacitracin resistancerfa Resistance to biological and organic chemicals
Bacteriocin resistancetol Resistance to biological and organic chemicals
Bacteriocin 4-59 resistanceompA Resistance to biological and organic chemicals
Bacteriocin 4-59 resistancetonB Resistance to biological and organic chemicals
Bacteriocin JF246 resistanceompA Resistance to biological and organic chemicals
Baikiain resistance in constitutive backgroundputA Resistance to biological and organic chemicals
β-Glycerol-phosphate resistance in glpDphoA Resistance to biological and organic chemicals
Beta-lactam conjugate resistancefhuA Resistance to biological and organic chemicals
Beta-lactam resistance (see mecillinam resistance)crp Resistance to biological and organic chemicals
Beta-lactam resistancecyaA Resistance to biological and organic chemicals
Beta-lactam resistancelyt Resistance to biological and organic chemicals
Beta-lactam resistancealaS Resistance to biological and organic chemicals
Beta-lactam resistanceargS Resistance to biological and organic chemicals
Bialaphos resistancedppA Resistance to biological and organic chemicals
Borrelidin resistancethrS Resistance to biological and organic chemicals
Bromodeoxyuridine + UV light resistanceung Resistance to biological and organic chemicals
Cadaverine resistancecadB Resistance to biological and organic chemicals
Caffeine resistanceglnV Resistance to biological and organic chemicals
Calmodulin inhibitor resistanceleuW Resistance to biological and organic chemicals
cAMP + glucose 6-phosphate + D-xylose + L-arabinose resistancecrp Resistance to biological and organic chemicals
cAMP + glucose 6-phosphate resistancecrp Resistance to biological and organic chemicals
Camphor resistancembrABCD Resistance to biological and organic chemicals
Canavanine + azauracil resistanceargR Resistance to biological and organic chemicals
Canavanine + thiouracil resistanceupp Resistance to biological and organic chemicals
Canavanine + thiouracil resistanceargP Resistance to biological and organic chemicals
Canavanine resistanceargS Resistance to biological and organic chemicals
Canavanine resistanceargP Resistance to biological and organic chemicals
Canavanine resistanceargR Resistance to biological and organic chemicals
CCCP resistanceatpA–atpE Resistance to biological and organic chemicals
CCCP resistance due to gene dosageemrB Resistance to biological and organic chemicals
Cephalosporin E-0702 resistancetonB Resistance to biological and organic chemicals
Cephalothin resistancerfa Resistance to biological and organic chemicals
Chelator resistanceompA Resistance to biological and organic chemicals
Chloramphenicol resistancecmlA Resistance to biological and organic chemicals
Chloramphenicol resistancemarA Resistance to biological and organic chemicals
Chloramphenicol resistancerrn Resistance to biological and organic chemicals
Chloramphenicol resistanceompF Resistance to biological and organic chemicals
Chloramphenicol resistanceompR Resistance to biological and organic chemicals
Chloro(β)-D-alanine resistancedadA Resistance to biological and organic chemicals
Chloro(β)-D-alanine resistancemetC (ecfA) Resistance to biological and organic chemicals
Chloro-3-hydroxyacetone resistance in uhp(Con)uhpT Resistance to biological and organic chemicals
Chloroacetaldehyde resistanceadhCE Resistance to biological and organic chemicals
Chloroacetate(β) resistancecbt Resistance to biological and organic chemicals
Chlorobiocin resistancegyrB Resistance to biological and organic chemicals
Chloroethanol resistanceadhCE Resistance to biological and organic chemicals
Chlorohydroxyacetone phosphate resistanceglpT Resistance to biological and organic chemicals
Chlorpromazine resistancelon Resistance to biological and organic chemicals
Chuangxinmycin resistancetrpR Resistance to biological and organic chemicals
Cloacin DF13 resistanceompF Resistance to biological and organic chemicals
Coenzyme A feedback resistancecoaA Resistance to biological and organic chemicals
Colicin “ K-type” tolerancehemB Resistance to biological and organic chemicals
Colicin (multiple) resistanceenvZ Resistance to biological and organic chemicals
Colicin (other) resistanceexbB Resistance to biological and organic chemicals
Colicin (other) resistanceexbC Resistance to biological and organic chemicals
Colicin A tolerancecpxA Resistance to biological and organic chemicals
Colicin A toleranceompF Resistance to biological and organic chemicals
Colicin A group tolerancecirA Resistance to biological and organic chemicals
Colicin A group tolerancetolQ Resistance to biological and organic chemicals
Colicin B resistanceexbC Resistance to biological and organic chemicals
Colicin B resistancefepABCDG Resistance to biological and organic chemicals
Colicin B resistancetonB Resistance to biological and organic chemicals
Colicin B tolerancecbt Resistance to biological and organic chemicals
Colicin D resistancecbt Resistance to biological and organic chemicals
Colicin D tolerancetolB Resistance to biological and organic chemicals
Colicin E resistancetolC Resistance to biological and organic chemicals
Colicin E1 tolerancecet Resistance to biological and organic chemicals
Colicin E1 tolerancetolQAB Resistance to biological and organic chemicals
Colicin E2 toleranceompF Resistance to biological and organic chemicals
Colicin E3 tolerancebtuB Resistance to biological and organic chemicals
Colicin E3 tolerancetolR Resistance to biological and organic chemicals
Colicin E2 and E3 tolerancetolE Resistance to biological and organic chemicals
Colicin E2 and E3 tolerancetolZ Resistance to biological and organic chemicals
Colicin E2, E3, D, Ia, and Ib tolerancetolI Resistance to biological and organic chemicals
Colicin I resistanceexbB Resistance to biological and organic chemicals
Colicin I resistanceexbC Resistance to biological and organic chemicals
Colicin I resistanceecfB Resistance to biological and organic chemicals
Colicin Ia and Ib tolerancetolJ Resistance to biological and organic chemicals
Colicin K resistancemetC (ecfA) Resistance to biological and organic chemicals
Colicin K resistancetsx Resistance to biological and organic chemicals
Colicin K resistanceompA Resistance to biological and organic chemicals
Colicin K toleranceompA Resistance to biological and organic chemicals
Colicin K toleranceompF Resistance to biological and organic chemicals
Colicin L toleranceenvZ Resistance to biological and organic chemicals
Colicin L toleranceompF Resistance to biological and organic chemicals
Colicin L tolerancefhuA Resistance to biological and organic chemicals
Colicin L, A, and S4 tolerancefepABCDG Resistance to biological and organic chemicals
Colicin M resistancetonB Resistance to biological and organic chemicals
Colicin M resistancetolM Resistance to biological and organic chemicals
Colicin M tolerancetolD Resistance to biological and organic chemicals
Coumermycin resistancegyrB Resistance to biological and organic chemicals
Coumermycin resistancehisW Resistance to biological and organic chemicals
Cyclopentane glycine resistanceilv structural genes Resistance to biological and organic chemicals
Cyclopentane glycine resistanceilvA Resistance to biological and organic chemicals
Cycloserine resistancehipA Resistance to biological and organic chemicals
Cycloserine (D) resistancecycA Resistance to biological and organic chemicals
Dapsone resistancethdA Resistance to biological and organic chemicals
Dehydrobiotin resistancebio operon Resistance to biological and organic chemicals
Dehydrobiotin resistancebioP Resistance to biological and organic chemicals
Dehydrobiotin resistancebirA Resistance to biological and organic chemicals
Dehydroproline + azetidine carboxylate resistance at high osmolarity in putAputPproU Resistance to biological and organic chemicals
Dehydroproline resistanceproB Resistance to biological and organic chemicals
Dehydroproline resistance in putA putPproP Resistance to biological and organic chemicals
Deoxy(2)adenosine resistance in deoCdeoD Resistance to biological and organic chemicals
Deoxyadenosine + fluorouracil resistance in uppdeoA Resistance to biological and organic chemicals
Deoxyadenosine + fluorouracil resistance in uppdeoD Resistance to biological and organic chemicals
Deoxydihydroxyphosphonyl methyl fructose resistanceuhpT Resistance to biological and organic chemicals
Deoxy(3)-3-fluoroglucose-independent utilization of lactateptsHIG Resistance to biological and organic chemicals
Deoxy(3)-3-fluoroglucose-independent utilization of fructoseptsG Resistance to biological and organic chemicals
Deoxy(3)-3-fluoroglucose resistanceptsI Resistance to biological and organic chemicals
Deoxy(2)galactitol resistance in galicitol utilizergatACD Resistance to biological and organic chemicals
Deoxy(2)galactose resistancegal operon Resistance to biological and organic chemicals
Deoxy(2)galactose resistancegalE Resistance to biological and organic chemicals
Deoxy(2)galactose resistancegalK Resistance to biological and organic chemicals
Deoxy(2)galactose resistancegalP Resistance to biological and organic chemicals
Deoxy(2)glucose-resistant utilization of melibiosemelB Resistance to biological and organic chemicals
Deoxyglucose resistancemanXYZ Resistance to biological and organic chemicals
Deoxy(2)glucose-6-phosphate resistanceuhpT Resistance to biological and organic chemicals
Deoxy(2)glucose-resistant fructose utilizationfruA Resistance to biological and organic chemicals
Deoxy(2)glucose-resistant fructose utilizationptsG Resistance to biological and organic chemicals
Deoxy(2)-2-iodoacetamidoglucose resistancenagE Resistance to biological and organic chemicals
Diamino(2,6)purine resistanceapt Resistance to biological and organic chemicals
Diamino(2,6)purine resistance in pnpapt Resistance to biological and organic chemicals
Dicyclohexylcarbodiimide resistance in rfarfb Resistance to biological and organic chemicals
Dideoxy(2′,3′)thymidine resistancetmk Resistance to biological and organic chemicals
Dihydroproline resistanceputP Resistance to biological and organic chemicals
Dihydroxybutylphosphonate resistancecls Resistance to biological and organic chemicals
Dihydroxybutylphosphonate resistanceglpT Resistance to biological and organic chemicals
Dihydroxybutylphosphonate resistance in glpTugpA,B Resistance to biological and organic chemicals
Dihydroxybutylphosphonate resistance in uhp(Con)uhpT Resistance to biological and organic chemicals
Dimethyl sulfoxide resistancepss Resistance to biological and organic chemicals
Dinitropyrene resistanceatoB Resistance to biological and organic chemicals
Dipeptide (valine containing) resistancedppA Resistance to biological and organic chemicals
Drug-resistant gene maintenancedor Resistance to biological and organic chemicals
Erythromycin growth dependencerrn Resistance to biological and organic chemicals
Erythromycin resistanceeryC Resistance to biological and organic chemicals
Erythromycin resistanceeryD Resistance to biological and organic chemicals
Erythromycin resistancemac Resistance to biological and organic chemicals
Erythromycin resistancerplD Resistance to biological and organic chemicals
Erythromycin resistancerplV Resistance to biological and organic chemicals
Erythromycin resistancerplC Resistance to biological and organic chemicals
Ethanol resistancepss Resistance to biological and organic chemicals
Ethionine resistancemetG Resistance to biological and organic chemicals
Ethionine resistancemetJ Resistance to biological and organic chemicals
Fluoroacetate resistanceack Resistance to biological and organic chemicals
Fluoroacetate resistancepta Resistance to biological and organic chemicals
Fluorocitrate resistancetct Resistance to biological and organic chemicals
Fluoro(5)cytosine resistancecodA Resistance to biological and organic chemicals
Fluoro(5)cytosine resistancecod Resistance to biological and organic chemicals
Fluorodeoxycytidine resistancecdd Resistance to biological and organic chemicals
Fluorodeoxycytidine resistancenupC Resistance to biological and organic chemicals
Fluorodeoxycytidine resistancenupG Resistance to biological and organic chemicals
Fluoro(5)deoxyuridine resistancetdk Resistance to biological and organic chemicals
Fluorodeoxyuridine resistancenupC Resistance to biological and organic chemicals
Fluorodeoxyuridine resistancenupG Resistance to biological and organic chemicals
Fluorodeoxyuridine + uracil resistance in deoAtdk Resistance to biological and organic chemicals
Fluoro(2)-L-erythrocitrate resistancetct Resistance to biological and organic chemicals
Fluoro-3-hydroxyacetone resistance in uhp(Con)uhpT Resistance to biological and organic chemicals
Fluorohydroxyacetone phosphate resistanceugpAB Resistance to biological and organic chemicals
Fluorohydroxyacetone phosphate resistanceglpT Resistance to biological and organic chemicals
Fluoro(3)malate resistancedct Resistance to biological and organic chemicals
Fluoro(5)orotic acid resistancepyrF Resistance to biological and organic chemicals
Fluoro(5)orotic acid resistancepyrH Resistance to biological and organic chemicals
Fluoro(4)phenylalanine resistancetyrR Resistance to biological and organic chemicals
Fluoro(4)phenylalanine resistancepheA Resistance to biological and organic chemicals
Fluoro(4)phenylalanine resistancepheR Resistance to biological and organic chemicals
Fluoro(4)phenylalanine resistancepheS Resistance to biological and organic chemicals
Fluoro(4)phenylalanine resistancepheU Resistance to biological and organic chemicals
Fluorophenylalanine resistancearoF Resistance to biological and organic chemicals
Fluorophenylalanine resistancearoG Resistance to biological and organic chemicals
Fluorophenylalanine resistancearoP Resistance to biological and organic chemicals
Fluorophenylalanine resistancetyrA Resistance to biological and organic chemicals
Fluoro(5)tryptophan resistancearoP Resistance to biological and organic chemicals
Fluoro(6)tryptophan resistancetrp (generic) Resistance to biological and organic chemicals
Fluorotyrosine resistancetyrR Resistance to biological and organic chemicals
Fluorotyrosine resistancetyrS Resistance to biological and organic chemicals
Fluoro(5)uracil + fluoro(5)uridine resistanceguaB Resistance to biological and organic chemicals
Fluoro(5)uracil + 5′-AMP resistance in uppushA Resistance to biological and organic chemicals
Fluoro(5)uracil + 5-fluorouridine resistance in udppyrH Resistance to biological and organic chemicals
Fluoro(5)uracil + nucleotide resistanceompF Resistance to biological and organic chemicals
Fluoro(5)uracil + nucleotide resistanceompR Resistance to biological and organic chemicals
Fluoro(5)uracil + adenosine resistanceudp Resistance to biological and organic chemicals
Fluorouracil + adenosine resistance in upp deoD xapR(Con)xapA Resistance to biological and organic chemicals
Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoTphoA Resistance to biological and organic chemicals
Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoTphoB Resistance to biological and organic chemicals
Fluoro(5)uracil and 3′-AMP resistancecpdB Resistance to biological and organic chemicals
Fluoro(5)uracil + 5′-AMP + 3′-AMP resistancecrp Resistance to biological and organic chemicals
Fluoro(5)uracil + carbamylaspartate resistanceubiF Resistance to biological and organic chemicals
Fluoro(5)uracil resistanceupp Resistance to biological and organic chemicals
Fluorouracil resistancenupC Resistance to biological and organic chemicals
Fluorouracil resistancenupG Resistance to biological and organic chemicals
Fluorouracil resistancepyrH Resistance to biological and organic chemicals
Fluorouracil resistancerpoB Resistance to biological and organic chemicals
Fluoro(5)uridine + uracil resistanceudk Resistance to biological and organic chemicals
Fluoro(5)uridine resistanceudhA Resistance to biological and organic chemicals
Fluoro(5)uridine resistance in uppudk Resistance to biological and organic chemicals
Fluorouridine resistancepyrH Resistance to biological and organic chemicals
Fluorouridine resistancenupC Resistance to biological and organic chemicals
Fluorouridine resistancenupG Resistance to biological and organic chemicals
Fosfomycin resistance due to increased gene dosagemurZ Resistance to biological and organic chemicals
Fosfomycin + fructose-6-phosphate resistancepgi Resistance to biological and organic chemicals
Fosfomycin resistancecrp Resistance to biological and organic chemicals
Fosfomycin resistancecyaA Resistance to biological and organic chemicals
Fosfomycin resistanceglpT Resistance to biological and organic chemicals
Fosfomycin resistancehipA Resistance to biological and organic chemicals
Fosfomycin resistancemrb Resistance to biological and organic chemicals
Fosfomycin resistanceptsI Resistance to biological and organic chemicals
Fosfomycin resistanceuhpT Resistance to biological and organic chemicals
Fucitol resistance in galactitol-utilizing strainsgatACD Resistance to biological and organic chemicals
Fucose + arabinose-supported growth in galPmglA Resistance to biological and organic chemicals
Fucose + arabinose-supported growth in galPmglB Resistance to biological and organic chemicals
Fucose + arabinose-supported growth in galPmglC Resistance to biological and organic chemicals
Fucose resistance (arabinose as C source)araC Resistance to biological and organic chemicals
Fusaric acid resistance of Tn10 insertion mutantstet Resistance to biological and organic chemicals
Fusidic acid resistancefusA Resistance to biological and organic chemicals
Galactose resistance in galEgalK Resistance to biological and organic chemicals
Galactose resistance in galTgalK Resistance to biological and organic chemicals
Galactose resistance in galUgal operon Resistance to biological and organic chemicals
Galactose resistance in galUgalK Resistance to biological and organic chemicals
Galactose resistance in galT+K+E+/galU galT+K+E+ merodiploidgalR Resistance to biological and organic chemicals
Galactose utilization in presence of thiomethylglucosidegal operon Resistance to biological and organic chemicals
Gentamicin resistancerplF Resistance to biological and organic chemicals
Gentamicin resistanceubiF Resistance to biological and organic chemicals
Globomicin resistancednaE Resistance to biological and organic chemicals
Globomicin resistancelpp Resistance to biological and organic chemicals
Glucarate (D) resistance in ppcgarA Resistance to biological and organic chemicals
Glucose + gluconate-independent motilitypts (general) Resistance to biological and organic chemicals
Glucose-resistant satisfaction of trp by indole + 5-methyltryptophantna Resistance to biological and organic chemicals
Glutamate (D) resistance in gltS (increased)gltS Resistance to biological and organic chemicals
Glutamine (D) resistanceglnP Resistance to biological and organic chemicals
Glutamyl(γ)hydrazide resistanceglnF Resistance to biological and organic chemicals
Glutamyl(γ)hydrazide resistanceglnH Resistance to biological and organic chemicals
Glutamyl(γ)hydrazide resistanceglnP Resistance to biological and organic chemicals
Glutamyl(γ)methyl ester resistancegltX Resistance to biological and organic chemicals
Glutamyl(γ)methyl ester resistancemetJ Resistance to biological and organic chemicals
Glutamyl(γ)methyl ester resistancemetK Resistance to biological and organic chemicals
Glyceraldehyde (DL) 3-phosphate resistanceglpT Resistance to biological and organic chemicals
Glyceraldehyde (L) 3-phosphate resistance in uhp(Con)uhpT Resistance to biological and organic chemicals
Glyceraldehyde (L) resistanceglpF Resistance to biological and organic chemicals
Glyceraldehyde (L) resistanceglpK Resistance to biological and organic chemicals
Glycerol 3-phosphorothioate resistanceglpT Resistance to biological and organic chemicals
Glycine toleranceqmeACDE Resistance to biological and organic chemicals
Glycylglycyl-N-phosphonoacetylornithine resistanceargR Resistance to biological and organic chemicals
Glycylleucine resistanceilvA Resistance to biological and organic chemicals
Glycylleucine resistanceilvB Resistance to biological and organic chemicals
Glycylleucine resistanceilvH Resistance to biological and organic chemicals
Glycylleucine resistanceilvI Resistance to biological and organic chemicals
Glycylleucine resistanceoppA Resistance to biological and organic chemicals
Glycylleucine resistance in ilvgleR Resistance to biological and organic chemicals
Glycylglycyl histidinol phosphate ester resistanceoppA Resistance to biological and organic chemicals
Glycylglycyl-N-phosphonoacetylornithine resistanceoppA Resistance to biological and organic chemicals
Glyphosate resistancearoA Resistance to biological and organic chemicals
Hexuronate resistance in edauxaBC Resistance to biological and organic chemicals
Hexuronate resistance in edauxuAB Resistance to biological and organic chemicals
Homocysteic acid resistancegltS Resistance to biological and organic chemicals
Hydrazino (α) imidazole propionic acid resistanceargT Resistance to biological and organic chemicals
Hydrazino (α) imidazole propionic acid resistancehisG Resistance to biological and organic chemicals
Hydrazino (α) imidazole propionic acid resistancehisJ Resistance to biological and organic chemicals
Hydrazino (α) imidazole propionic acid resistancehisQ Resistance to biological and organic chemicals
Hydrazino (α) imidazole propionic acid resistance in dhuAhisP Resistance to biological and organic chemicals
Hydroxy (β) norvaline resistancemetL Resistance to biological and organic chemicals
Hydroxyaspartate resistancepan Resistance to biological and organic chemicals
Hydroxybutylphosphonate resistance in uhp(Con)uhpT Resistance to biological and organic chemicals
Hydroxyurea resistancenrdA Resistance to biological and organic chemicals
Hydroxyurea resistancenrdB Resistance to biological and organic chemicals
Indole acrylic acid resistancearoT Resistance to biological and organic chemicals
Indolmycin resistancetrpS Resistance to biological and organic chemicals
Indospicine resistanceargR Resistance to biological and organic chemicals
Iodoacetylglucosamine resistancenagA Resistance to biological and organic chemicals
Iodoacetylglucosamine resistancenagB Resistance to biological and organic chemicals
Iodoacetylglucosamine resistancenagE Resistance to biological and organic chemicals
Isoniazid resistancepdx Resistance to biological and organic chemicals
Kanamycin resistanceatpA–atpE Resistance to biological and organic chemicals
Kanamycin resistancecpxA Resistance to biological and organic chemicals
Kanamycin resistanceecfB Resistance to biological and organic chemicals
Kanamycin resistancehemA Resistance to biological and organic chemicals
Kanamycin resistancehemB Resistance to biological and organic chemicals
Kanamycin resistancehemL Resistance to biological and organic chemicals
Kanamycin resistancetopA Resistance to biological and organic chemicals
Kasugamycin resistanceksgA Resistance to biological and organic chemicals
Kasugamycin resistanceksgB Resistance to biological and organic chemicals
Kasugamycin resistanceksgC Resistance to biological and organic chemicals
Kasugamycin resistanceksgD Resistance to biological and organic chemicals
Kasugamycin resistancerplK Resistance to biological and organic chemicals
Kasugamycin resistancerplB Resistance to biological and organic chemicals
Kasugamycin resistancerpsN Resistance to biological and organic chemicals
Kasugamycin resistancerpsM Resistance to biological and organic chemicals
Kasugamycin resistancerpsR Resistance to biological and organic chemicals
Kasugamycin resistance and dependencerpsI Resistance to biological and organic chemicals
Keto(2)butyrate resistanceilvA Resistance to biological and organic chemicals
Kirromycin resistancetufAB Resistance to biological and organic chemicals
Lambda cII phage + rifampin coresistancerpoB Resistance to biological and organic chemicals
Lambda phage + nalidixic acid resistancecrp Resistance to biological and organic chemicals
Lambda phage + nalidixic acid resistancecyaA Resistance to biological and organic chemicals
Levallorphan resistancelev Resistance to biological and organic chemicals
Lincomycin resistancelinB Resistance to biological and organic chemicals
Lincomycin resistancerplN Resistance to biological and organic chemicals
Lincomycin resistancerplO Resistance to biological and organic chemicals
Lincomycin resistancerpsG Resistance to biological and organic chemicals
Lithium-resistant use of proline as C sourceputP Resistance to biological and organic chemicals
Lysine hydroxamate resistancelysC Resistance to biological and organic chemicals
Mecillinam resistance (see beta-lactam resistance)alaS Resistance to biological and organic chemicals
Mecillinam resistanceargS Resistance to biological and organic chemicals
Mecillinam resistancecrp Resistance to biological and organic chemicals
Mecillinam resistancecyaA Resistance to biological and organic chemicals
Mecillinam resistanceenvB Resistance to biological and organic chemicals
Mecillinam resistancemrdA Resistance to biological and organic chemicals
Mecillinam resistancemrdB Resistance to biological and organic chemicals
Mecillinam resistancemreB Resistance to biological and organic chemicals
Mecillinam resistancemreC Resistance to biological and organic chemicals
Mecillinam resistancemreD Resistance to biological and organic chemicals
Menadionine resistancemarA Resistance to biological and organic chemicals
Mercaptopurine resistance in gpthpt Resistance to biological and organic chemicals
Methionine sulfoximine + methyl(α)methionine resistancemetJ Resistance to biological and organic chemicals
Methionine sulfoximine resistanceasm Resistance to biological and organic chemicals
Methionine sulfoximine resistanceglnP Resistance to biological and organic chemicals
Methionine sulfoximine resistancemetP Resistance to biological and organic chemicals
Methionine sulfoximine resistance in glnGglnA Resistance to biological and organic chemicals
Methylammonium resistanceglnA Resistance to biological and organic chemicals
Methyl(3)anthranilate resistancetrpE Resistance to biological and organic chemicals
Methyl(3)anthranilate resistancearoG Resistance to biological and organic chemicals
Methyl(α)glutamate resistance in gltS (increased)gltS Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of lactoselacIO Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of maltosemalE Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of maltosemalF Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of maltosemalG Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of maltosemalK Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of mannitol + lactoseptsG Resistance to biological and organic chemicals
Methylglucoside(α) resistanceptsG Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of glycerol in ∆ptsHIcrr Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of lactose in ptsHlacI, operator Resistance to biological and organic chemicals
Methylglucoside(α)-resistant utilization of melibiosemel Resistance to biological and organic chemicals
Methylglyoxal resistancegsh Resistance to biological and organic chemicals
Methyl(2)histidine resistance + aminotriazole resistancehisR Resistance to biological and organic chemicals
Methyl methanesulfonate resistance in lonsulA Resistance to biological and organic chemicals
Methyl methanesulfonate resistance in lonftsZ Resistance to biological and organic chemicals
Methyl(α)methionine resistancemetA Resistance to biological and organic chemicals
Methyl(α)methionine resistancemetD (metP) Resistance to biological and organic chemicals
Methyl(α)methionine resistancemetK Resistance to biological and organic chemicals
Methyl(6)purine resistanceapt Resistance to biological and organic chemicals
Methyl(6)purine + hypoxanthine resistancepurA Resistance to biological and organic chemicals
Methyl(o)threonine resistancebrnQ Resistance to biological and organic chemicals
Methyl(4)tryptophan resistance in aroParoT Resistance to biological and organic chemicals
Methyl(5)tryptophan resistancemtr Resistance to biological and organic chemicals
Methyl(5)tryptophan resistancearoP Resistance to biological and organic chemicals
Methyl(5)tryptophan resistancetrp (generic) Resistance to biological and organic chemicals
Methyl(5)tryptophan resistancetrpE Resistance to biological and organic chemicals
Methyl(5)tryptophan resistancetrpR Resistance to biological and organic chemicals
Methyl(5)tryptophan + thienylalanine resistancearoP Resistance to biological and organic chemicals
Methyl viologen resistancemvrA Resistance to biological and organic chemicals
Methyl viologen resistance (multicopy)mvrC Resistance to biological and organic chemicals
Methyl viologen resistancegor Resistance to biological and organic chemicals
Metronidazole resistancenar (general) Resistance to biological and organic chemicals
Microcin B17 resistancesbmA Resistance to biological and organic chemicals
Microcin E492 resistancesemA Resistance to biological and organic chemicals
Mitomycin C resistance of lexA(Con)lexA Resistance to biological and organic chemicals
Mocimycin resistancetufA,B Resistance to biological and organic chemicals
Nalidixic acid resistancehisU Resistance to biological and organic chemicals
Nalidixic acid resistanceicdE Resistance to biological and organic chemicals
Nalidixic acid tolerancesloB Resistance to biological and organic chemicals
Nalidixic acid resistancegyrA Resistance to biological and organic chemicals
Nalidixic acid resistancegyrB Resistance to biological and organic chemicals
Nalidixic acid resistancenalB Resistance to biological and organic chemicals
Nalidixic acid resistancenalD Resistance to biological and organic chemicals
Nalidixic acid resistancepurB Resistance to biological and organic chemicals
Nalidixic acid resistance due to gene dosageemrB Resistance to biological and organic chemicals
Neamine resistancerpsL Resistance to biological and organic chemicals
Neamine resistancerpsQ Resistance to biological and organic chemicals
Neamine resistanceneaB Resistance to biological and organic chemicals
Negamycin resistanceprfB Resistance to biological and organic chemicals
Neomycin resistanceatpA–atpE Resistance to biological and organic chemicals
Neomycin resistanceecfB Resistance to biological and organic chemicals
Neomycin resistancehemA Resistance to biological and organic chemicals
Neomycin resistancehemC Resistance to biological and organic chemicals
Neomycin resistancehemD Resistance to biological and organic chemicals
Neomycin resistancehemE Resistance to biological and organic chemicals
Neomycin resistancehemG Resistance to biological and organic chemicals
Neomycin resistancemetC (ecfA) Resistance to biological and organic chemicals
Neomycin resistancetopA Resistance to biological and organic chemicals
Neomycin resistanceubi (generic) Resistance to biological and organic chemicals
Neutrophil granule protein resistancepmrA Resistance to biological and organic chemicals
Nitro(4)pyridine N-oxide resistanceproA Resistance to biological and organic chemicals
Nitro(4)pyridine N-oxide resistanceproB Resistance to biological and organic chemicals
Nitro(o)-phenyl galactoside resistancelacZ Resistance to biological and organic chemicals
Nitro(o)-phenylthiogalactoside resistancelacY Resistance to biological and organic chemicals
Nitro(o)-phenylthiogalactoside resistance in lacI(Con) or lacO(Con) lacI, operator Resistance to biological and organic chemicals
Nitrofurantoin resistancenfnA Resistance to biological and organic chemicals
Nitrofurantoin resistancenfnB Resistance to biological and organic chemicals
Nitrofurantoin resistance in lonsulA Resistance to biological and organic chemicals
Nitrofurantoin resistance in lonftsZ Resistance to biological and organic chemicals
Nitrofuranzone resistancenfsA Resistance to biological and organic chemicals
Nitrofuranzone resistancenfsB Resistance to biological and organic chemicals
Nitrosoguanidine resistanceada Resistance to biological and organic chemicals
Nitrosoguanidine resistancegsh (generic) Resistance to biological and organic chemicals
Norfloxacin resistancehipQ Resistance to biological and organic chemicals
Norleucine resistancemetJ Resistance to biological and organic chemicals
Norleucine resistancemetK Resistance to biological and organic chemicals
Norleucine resistancenol Resistance to biological and organic chemicals
Norleucylglycyl glycine resistanceoppA Resistance to biological and organic chemicals
Novobiocin resistancecysB Resistance to biological and organic chemicals
Novobiocin resistancecysE Resistance to biological and organic chemicals
Novobiocin resistancegyrB Resistance to biological and organic chemicals
Novobiocin resistancenov Resistance to biological and organic chemicals
Novobiocin resistanceompA Resistance to biological and organic chemicals
Oxolinic acid resistancegyrA Resistance to biological and organic chemicals
Paromycin resistance or dependencerpsL Resistance to biological and organic chemicals
Pentachlorophenol resistanceatpA–atpE Resistance to biological and organic chemicals
Penten(4)oate resistance in atoC(Con)atoC Resistance to biological and organic chemicals
Pentylpantothenamide resistancepan Resistance to biological and organic chemicals
Peptide (toxic, valine containing) resistancepepA Resistance to biological and organic chemicals
Peptide (toxic, valine containing) resistancepepD Resistance to biological and organic chemicals
Peptide (toxic, valine containing) resistancepepN Resistance to biological and organic chemicals
Peptide (toxic, valine containing) resistancepepQ Resistance to biological and organic chemicals
Peroxide (organic) resistanceoxyR Resistance to biological and organic chemicals
Phaseolotoxin resistanceoppA Resistance to biological and organic chemicals
Phenethyl alcohol resistancednaB Resistance to biological and organic chemicals
Phenethyl alcohol resistancednaP Resistance to biological and organic chemicals
Phenethyl alcohol resistancesecA Resistance to biological and organic chemicals
Phenethylyl galactoside resistancelacY Resistance to biological and organic chemicals
Phenethylyl galactoside resistancelacZ Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacP lacI(nonsense) supEhisT Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacP lacI(nonsense) supEprfA Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacP lacI(nonsense) supErpsL Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supLlysS Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supLstrM Resistance to biological and organic chemicals
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supLtrmE Resistance to biological and organic chemicals
Phenyl galactoside resistancelacY Resistance to biological and organic chemicals
Phenyl galactoside resistancelacZ Resistance to biological and organic chemicals
Phenylalanylleucine resistanceilvB Resistance to biological and organic chemicals
Phenylalanylleucine resistanceilvH Resistance to biological and organic chemicals
Phenylalanylleucine resistanceilvI Resistance to biological and organic chemicals
Plasmid maintenancepolA Resistance to biological and organic chemicals
Polymyxin resistancepmrA Resistance to biological and organic chemicals
Promethazine resistancelon Resistance to biological and organic chemicals
Pseudomonic acid resistanceileS Resistance to biological and organic chemicals
Psicofuranine resistanceguaAB Resistance to biological and organic chemicals
Psoralen + UV irradiation resistancepuvA Resistance to biological and organic chemicals
Pyrithiamine resistancethi Resistance to biological and organic chemicals
Quinaldic acid resistance of Tn10 insertion mutantstet Resistance to biological and organic chemicals
Quinolone resistancegyrA Resistance to biological and organic chemicals
Ribitol resistance in araC(Con)araB Resistance to biological and organic chemicals
Ribitol resistance in araC(Con)araC Resistance to biological and organic chemicals
Rifampin + kasugamycin dependenceridA Resistance to biological and organic chemicals
Rifampin dependenceridB Resistance to biological and organic chemicals
Rifampin resistancecrp Resistance to biological and organic chemicals
Rifampin resistancecyaA Resistance to biological and organic chemicals
Rifampin resistancerpoB Resistance to biological and organic chemicals
Rifampin resistance in rpoB+/rpoB (rif) diploidsrpoB Resistance to biological and organic chemicals
Salicylate resistancepan Resistance to biological and organic chemicals
Serine (D) resistancecycA Resistance to biological and organic chemicals
Serine + methionine + glycine resistance in relAglyA Resistance to biological and organic chemicals
Serine hydroxamate resistanceserA Resistance to biological and organic chemicals
Serine hydroxamate resistanceserS Resistance to biological and organic chemicals
Serine resistancesbaA Resistance to biological and organic chemicals
Serine resistancethrA Resistance to biological and organic chemicals
Serine resistance in relAcrp Resistance to biological and organic chemicals
Serine resistance in relAcyaA Resistance to biological and organic chemicals
Serine resistance in relArelA Resistance to biological and organic chemicals
Serine resistance in relArpoB Resistance to biological and organic chemicals
Serine resistance in relArpoC Resistance to biological and organic chemicals
Showdomycin resistancenupC Resistance to biological and organic chemicals
Showdomycin resistancepnp Resistance to biological and organic chemicals
Siderophore–beta-lactam conjugate resistancecirA Resistance to biological and organic chemicals
Sorbitol + xylitol resistancesrlA Resistance to biological and organic chemicals
Sorbose (L) resistancefruA Resistance to biological and organic chemicals
Sorbose resistanceptsG Resistance to biological and organic chemicals
Spectinomycin resistancerpsE Resistance to biological and organic chemicals
Spectinomycin resistancerrn Resistance to biological and organic chemicals
Spectinomycin resistancespcB Resistance to biological and organic chemicals
Spectinomycin resistance and sucrose dependencerpsC Resistance to biological and organic chemicals
Spectinomycin resistance and sucrose dependencerpsD Resistance to biological and organic chemicals
Spectinomycin resistance and sucrose dependencerpsE Resistance to biological and organic chemicals
Streptolydigin resistancerpoB Resistance to biological and organic chemicals
Streptomycin + cAMP resistancecrp Resistance to biological and organic chemicals
Streptomycin resistancehem (generic) Resistance to biological and organic chemicals
Streptomycin resistancerpsL Resistance to biological and organic chemicals
Streptomycin resistancestrB Resistance to biological and organic chemicals
Streptomycin resistancestrC Resistance to biological and organic chemicals
Streptomycin resistancestrM Resistance to biological and organic chemicals
Streptomycin resistanceubiF Resistance to biological and organic chemicals
Streptomycin resistancemut (generic) Resistance to biological and organic chemicals
Streptomycin resistancetopA Resistance to biological and organic chemicals
Streptovaricin resistancerpoB Resistance to biological and organic chemicals
Streptozotocin resistancefba Resistance to biological and organic chemicals
Streptozotocin resistancegalT Resistance to biological and organic chemicals
Streptozotocin resistancemanA Resistance to biological and organic chemicals
Streptozotocin resistancenagA Resistance to biological and organic chemicals
Streptozotocin resistancenagE Resistance to biological and organic chemicals
Streptozotocin resistancepfkA Resistance to biological and organic chemicals
Streptozotocin resistanceptsI Resistance to biological and organic chemicals
Streptozotocin resistanceglpD Resistance to biological and organic chemicals
Sulfanilamide + hypoxanthine resistancehpt Resistance to biological and organic chemicals
Sulfanilamide + hypoxanthine resistancepspABCDE Resistance to biological and organic chemicals
Sulfanilamide resistancefolP Resistance to biological and organic chemicals
Sulfanilamide resistancegpt Resistance to biological and organic chemicals
Sulfometuron methyl + valine resistanceilv structural genes Resistance to biological and organic chemicals
Sulfometuron methyl + valine resistanceilvG Resistance to biological and organic chemicals
Sulfonamide resistancefolA Resistance to biological and organic chemicals
Sulfonamide resistancepab Resistance to biological and organic chemicals
Tartrate resistancedct Resistance to biological and organic chemicals
Tetracycline resistancecmlA Resistance to biological and organic chemicals
Tetracycline resistancemarA Resistance to biological and organic chemicals
Tetracycline resistanceompF Resistance to biological and organic chemicals
Thiaisoleucine resistanceileS Resistance to biological and organic chemicals
Thiaisoleucine resistanceilvU Resistance to biological and organic chemicals
Thialysine resistancethrA Resistance to biological and organic chemicals
Thiazolealanine resistancehisG Resistance to biological and organic chemicals
Thiazolealanine resistancehisR Resistance to biological and organic chemicals
Thienylalanine resistancearoP Resistance to biological and organic chemicals
Thienylalanine resistancearoG Resistance to biological and organic chemicals
Thiodigalactoside resistancelacY Resistance to biological and organic chemicals
Thio(5)glucose resistancecrr Resistance to biological and organic chemicals
Thiolactomycin resistanceemrB Resistance to biological and organic chemicals
Thiolactomycin resistance (due to gene dosage)fadB Resistance to biological and organic chemicals
Thiolactomycin resistance (due to gene dosage)emrB Resistance to biological and organic chemicals
Thiolutin resistancetlnA Resistance to biological and organic chemicals
Thiomaltose resistancelamB Resistance to biological and organic chemicals
Thiomaltose resistancemalE Resistance to biological and organic chemicals
Thiomaltose resistancemalF Resistance to biological and organic chemicals
Thiomaltose resistancemalG Resistance to biological and organic chemicals
Thiomaltose resistancemalK Resistance to biological and organic chemicals
Thiomaltose resistancemalT Resistance to biological and organic chemicals
Thiomethylgalactoside-independent utilization of galactose in galR(Con)galR Resistance to biological and organic chemicals
Thiopeptin resistancerplE Resistance to biological and organic chemicals
Thiosine resistanceargP Resistance to biological and organic chemicals
Thymidine resistance in deoCdeoA Resistance to biological and organic chemicals
Thymidine resistance in deoCdeoB Resistance to biological and organic chemicals
Thymineless death prevention by low thymine levels in thyAdeoB Resistance to biological and organic chemicals
Thymineless death prevention by low thymine levels in thyAdeoC Resistance to biological and organic chemicals
Thymineless death resistance in thyArecF Resistance to biological and organic chemicals
Thymineless death resistance in thyArecJ Resistance to biological and organic chemicals
Thymineless death resistance in thyArecO Resistance to biological and organic chemicals
Thymineless death resistance in thyArecQ Resistance to biological and organic chemicals
Thymineless death resistance in thyAalaS Resistance to biological and organic chemicals
Thymineless death resistance in thyApheS Resistance to biological and organic chemicals
Thymineless death resistance in thyAvalS Resistance to biological and organic chemicals
Tiamulin resistancerplC Resistance to biological and organic chemicals
Tiamulin resistancerplD Resistance to biological and organic chemicals
Triazole resistancecysB Resistance to biological and organic chemicals
Triazole resistancecysE Resistance to biological and organic chemicals
Triazole resistancecysG Resistance to biological and organic chemicals
Triazole resistancetrzA Resistance to biological and organic chemicals
Triazole resistance in cysMcysB Resistance to biological and organic chemicals
Triazole resistance in cysMcysE Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancegyrA Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancegyrB Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehis structural genes Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehisR Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehisS Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehisT Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehisU Resistance to biological and organic chemicals
Triazolealanine + aminotriazole resistancehisW Resistance to biological and organic chemicals
Trifluorocitrate resistancetct Resistance to biological and organic chemicals
Trifluoroleucine resistanceflrB Resistance to biological and organic chemicals
Trifluoroleucine resistanceileR Resistance to biological and organic chemicals
Trifluoroleucine resistanceleuA Resistance to biological and organic chemicals
Trifluoroleucine resistanceleuJ Resistance to biological and organic chemicals
Trifluoroleucine resistanceleu (generic) Resistance to biological and organic chemicals
Trifluoroleucine resistanceleuS Resistance to biological and organic chemicals
Trilysine resistanceoppA Resistance to biological and organic chemicals
Trimethoprim resistancefolA Resistance to biological and organic chemicals
Trimethoprim resistancethyA Resistance to biological and organic chemicals
Triornithine resistanceoppA Resistance to biological and organic chemicals
Triornithine resistance in opptpp Resistance to biological and organic chemicals
Tripeptide (toxic amino acid containing) resistanceoppAE Resistance to biological and organic chemicals
Tripeptide (toxic amino acid containing) resistancetppA Resistance to biological and organic chemicals
Tripeptide (toxic amino acid containing) resistancetppB Resistance to biological and organic chemicals
Tryptophan analog resistancearoH Resistance to biological and organic chemicals
Uncoupler resistancesatpA–atpE Resistance to biological and organic chemicals
Uridine resistance of thyA deoBdeoR Resistance to biological and organic chemicals
Valine resistanceilv structural genes Resistance to biological and organic chemicals
Valine resistanceilvB Resistance to biological and organic chemicals
Valine resistanceilvF Resistance to biological and organic chemicals
Valine resistanceilvG Resistance to biological and organic chemicals
Valine resistanceilvH Resistance to biological and organic chemicals
Valine resistanceilvI Resistance to biological and organic chemicals
Valine resistanceilvJ Resistance to biological and organic chemicals
Valine resistancelivG Resistance to biological and organic chemicals
Valine resistancelivH Resistance to biological and organic chemicals
Valine resistancelivJ Resistance to biological and organic chemicals
Valine resistancelivK Resistance to biological and organic chemicals
Valine resistancebrnQ Resistance to biological and organic chemicals
Vinylglycolate resistancedld Resistance to biological and organic chemicals
Vinylglycolate resistancelct Resistance to biological and organic chemicals
Xylitol resistancefruA Resistance to biological and organic chemicals
Xylose resistance in fdaxylE Resistance to biological and organic chemicals
Xylose (D) + cAMP resistancecxm Resistance to biological and organic chemicals
9NA phage resistancepmi Resistance to biological agents
9NA phage resistance in galEkdsA Resistance to biological agents
Bf23 phage resistancebtuB Resistance to biological agents
C21 phage resistancerfaD Resistance to biological agents
Chi phage resistancefliC (hag) Resistance to biological agents
Chi phage resistancemotA Resistance to biological agents
Chi phage resistancemotB Resistance to biological agents
ES18 phage resistancefhuA Resistance to biological agents
ES18 phage resistanceprbA,B Resistance to biological agents
ES18 phage resistancesidK Resistance to biological agents
ES18 phage resistancetonB Resistance to biological agents
Felix O phage resistancegalE Resistance to biological agents
Felix O phage resistancegalU Resistance to biological agents
Felix O phage resistancerfaC,D,E,F,H Resistance to biological agents
Filamentous phage tolerancetolR Resistance to biological agents
Filamentous phage tolerancetolQ Resistance to biological agents
HK009 phage resistanceprh Resistance to biological agents
HK068 phage resistanceprk Resistance to biological agents
Host range phage (from Serratia marcescens) resistanceompC Resistance to biological agents
K10 phage resistancelamB Resistance to biological agents
K3 phage resistanceompA Resistance to biological agents
Lambda + 434 phage resistancemopA Resistance to biological agents
Lambda + 434 phage resistancemopB Resistance to biological agents
Lambda cII + rifampin coresistancerpoB Resistance to biological agents
Lambda mutant infection resistancegyrB (hisW) Resistance to biological agents
Lambda mutant phage infection, survival ofhimA Resistance to biological agents
Lambda mutant phage resistancehflC Resistance to biological agents
Lambda mutant phage resistancehflK Resistance to biological agents
Lambda mutant phage resistancehflX Resistance to biological agents
Lambda mutant prophage induction, survival ofgrpD Resistance to biological agents
Lambda mutant prophage induction, survival ofgrpE Resistance to biological agents
Lambda phage + nalidixic acid resistancecrp Resistance to biological agents
Lambda phage + nalidixic acid resistancecyaA Resistance to biological agents
Lambda phage + 434 phage cross-resistancerpoB Resistance to biological agents
Lambda phage gamma mutant resistancepolA Resistance to biological agents
Lambda phage induction, resistance todnaJ Resistance to biological agents
Lambda phage induction, resistance todnaK Resistance to biological agents
Lambda phage resistanceenvZ Resistance to biological agents
Lambda phage resistancegprAB Resistance to biological agents
Lambda phage resistancelamB Resistance to biological agents
Lambda phage resistancemalK Resistance to biological agents
Lambda phage resistancemalT Resistance to biological agents
Lambda phage resistancerap Resistance to biological agents
Lambda phage resistance with maltose and arabinose as C sourcescrp Resistance to biological agents
Lambda phage resistance with maltose and arabinose as C sourcescyaA Resistance to biological agents
Lambda prophage induction deficiency during thymine deprivationrecA Resistance to biological agents
Lambda prophage induction, resistance torpsJ Resistance to biological agents
Lambda prophage induction, resistance torpsM Resistance to biological agents
Lambda prophage induction, survival ofnusA Resistance to biological agents
Lambda prophage induction, survival ofnusB Resistance to biological agents
Lambda sus N7 nin-5 resistance in P2 lysogenrho Resistance to biological agents
Lambda vir resistance after infection with heteromodified lambda cI857hsd Resistance to biological agents
Lambdoid phage resistancenusB Resistance to biological agents
Lambdoid phage mixture coinfection resistancednaB Resistance to biological agents
Lambdoid phage mixture coinfection resistancednaJ Resistance to biological agents
Lambdoid phage mixture coinfection resistancednaK Resistance to biological agents
Lambda cI71 resistancerpoD Resistance to biological agents
Lambda Nmar mutant phage resistancerpoB Resistance to biological agents
Male-specific phage resistancearcA (fexA) Resistance to biological agents
Me1 phage resistanceenvZ Resistance to biological agents
Me1 phage resistanceompC Resistance to biological agents
Me1 phage resistanceompF Resistance to biological agents
Me1 phage resistanceompR Resistance to biological agents
Mu phage lytic growth resistancehimA Resistance to biological agents
Mu phage lytic growth resistancehimD Resistance to biological agents
Mu prophage induction, survival ofhimA Resistance to biological agents
Mu prophage induction, survival ofhimD Resistance to biological agents
N4 phage resistancemanXYZ Resistance to biological agents
Ox2 phage resistanceompA Resistance to biological agents
P1 phage resistancegalE Resistance to biological agents
P1 phage resistancegalU Resistance to biological agents
P1 phage resistancelpcA Resistance to biological agents
P1 phage resistancerfaD Resistance to biological agents
P1 phage specialized transduction of drug resistance to Salmonella sp.sspA Resistance to biological agents
P2 vir1 phage resistancerpoA Resistance to biological agents
P2 phage + lambda phage coinfection resistancednaJ Resistance to biological agents
P2 phage + lambda phage coinfection resistancednaK Resistance to biological agents
P2 phage resistancerep Resistance to biological agents
P22 phage resistancegalE Resistance to biological agents
P22 phage resistancepmi Resistance to biological agents
P221 phage resistancepraAB Resistance to biological agents
PH105 phage resistanceompB (ompR of E. coli) Resistance to biological agents
PH105 phage resistanceompC Resistance to biological agents
PH105 phage resistanceompF Resistance to biological agents
PH105 phage resistancepraAB Resistance to biological agents
PH51 phage resistanceompB (ompR of E. coli) Resistance to biological agents
PH51 phage resistanceompC Resistance to biological agents
PH51 phage resistanceompF Resistance to biological agents
PH51 phage resistancepraAB Resistance to biological agents
PH51 phage resistanceprdB Resistance to biological agents
φX174 phage resistancephxB Resistance to biological agents
φ80 phage resistancefhuA Resistance to biological agents
φ80 phage resistancetonB Resistance to biological agents
Q phage resistancecpxA (ecfB, ssd, eup) Resistance to biological agents
T-even phage resistanceompA Resistance to biological agents
T1 phage (UV irradiated) resistancephr Resistance to biological agents
T1 phage resistancefhuA Resistance to biological agents
T1 phage resistancetonB Resistance to biological agents
T2 phage resistance in ompF+ or ompFfadL Resistance to biological agents
T3 phage resistancelpcA Resistance to biological agents
T4 mutant phage resistancelit Resistance to biological agents
T4 phage lig mutant nibbling of colonies yielding lig-overproducing strainlig Resistance to biological agents
T4 phage lig mutant resistance from lig-overproducing strainlig Resistance to biological agents
T4 phage resistancelpcA Resistance to biological agents
T4 phage resistancelpcB Resistance to biological agents
T4 phage resistancemopA Resistance to biological agents
T4 phage resistancemopB Resistance to biological agents
T4 phage resistancerho Resistance to biological agents
T4 phage resistancetabC Resistance to biological agents
T4 phage resistancelit Resistance to biological agents
T4 phage (uracil containing) resistanceung Resistance to biological agents
T5 phage resistancefhuA Resistance to biological agents
T6 phage resistancecrp Resistance to biological agents
T6 phage resistancecyaA Resistance to biological agents
T6 phage resistancetsx Resistance to biological agents
T7 phage gene 1.2 mutant resistanceoptA Resistance to biological agents
T7 phage gene 2 resistancerpoC Resistance to biological agents
T7 phage resistancegroM Resistance to biological agents
T7 phage resistancelpcA Resistance to biological agents
T7 phage resistancelpcB Resistance to biological agents
T7 phage resistancerpoB Resistance to biological agents
T7 phage resistancetrxA Resistance to biological agents
TC45 phage resistancephoB Resistance to biological agents
TC45 phage resistancephoE Resistance to biological agents
TC45 phage resistancephoR Resistance to biological agents
TC45 phage resistancephoS Resistance to biological agents
TC45 phage resistancephoT Resistance to biological agents
TC45 phage resistancepstABCS Resistance to biological agents
TP1 phage resistanceenvZ Resistance to biological agents
TuIa phage resistanceenvZ Resistance to biological agents
TuIa phage resistanceompC Resistance to biological agents
TuIa phage resistanceompF Resistance to biological agents
TuIa phage resistanceompR Resistance to biological agents
TuIa phage resistancetolQAB Resistance to biological agents
TuIb phage resistanceompF Resistance to biological agents
TuII* phage resistanceompA Resistance to biological agents
U3 phage + K3 phage coresistancerfaP Resistance to biological agents
U3 phage resistancegalE Resistance to biological agents
U3 phage resistancegalU Resistance to biological agents
U3 phage resistancepgi Resistance to biological agents
U3 phage resistancepgm Resistance to biological agents
U3 phage resistancerfa (general) Resistance to biological agents
UV-irradiated lytic phage resistanceuvrA Resistance to biological agents
UV-irradiated lytic phage resistanceuvrB Resistance to biological agents
UV-irradiated lytic phage resistanceuvrC Resistance to biological agents
UV-irradiated lytic phage resistanceuvrD Resistance to biological agents
Cold resistance in rpsE cold-sensitive mutantsrpsB Resistance to physical extremes
Cold-resistant growthcrg Resistance to physical extremes
Filter retentionfts (generic) Resistance to physical extremes
Freeze-thaw resistanceenvZ Resistance to physical extremes
Gamma irradiation resistancegarA Resistance to physical extremes
Gamma irradiation resistancegarB Resistance to physical extremes
Growth at 42°C in his-overexpressing strainhis structural genes Resistance to physical extremes
Near-UV irradiation resistancenuvA Resistance to physical extremes
Near-UV irradiation resistancenuvC Resistance to physical extremes
Near-UV irradiation resistancerelA Resistance to physical extremes
Osmotolerancecrp Resistance to physical extremes
OsmotolerancecyaA Resistance to physical extremes
OsmotoleranceosmB Resistance to physical extremes
OsmotoleranceproA Resistance to physical extremes
OsmotoleranceproB Resistance to physical extremes
Phage (UV-irradiated T1) resistancephr Resistance to physical extremes
Psoralen + UV irradiation resistancepuvA Resistance to physical extremes
Temperature resistance in rpoD (Ts)rpoH Resistance to physical extremes
ThermotolerancegyrA Resistance to physical extremes
UV light resistancecrp Resistance to physical extremes
UV light resistancecyaA Resistance to physical extremes
UV light resistanceenvB Resistance to physical extremes
UV light resistance relA Resistance to physical extremes
UV irradiation resistance in lonsulA Resistance to physical extremes
UV irradiation resistance in lonftsZ Resistance to physical extremes
UV light + bromodeoxyuridine resistancetdk Resistance to physical extremes
UV light + bromodeoxyuridine resistanceung Resistance to physical extremes
UV light + psoralen resistancepuvA Resistance to physical extremes
UV-irradiated lytic phage resistanceuvrA Resistance to physical extremes
UV-irradiated lytic phage resistanceuvrB Resistance to physical extremes
UV-irradiated lytic phage resistanceuvrC Resistance to physical extremes
UV-irradiated lytic phage resistanceuvrD Resistance to physical extremes
Migration in a chemical gradientche Movement
Static cultivation (prolonged)fliC Movement

Genes for which selections exist in E. coli and S. typhimurium

GeneOrganismSelectionReferencesAlteration*
ackAE, SFluoroacetate resistance96 281 463 797 L
adaENitrosoguanidine resistance693
addEDeoxyadenosine + hypoxanthine satisfaction of purB requirement370 L
addSDeoxyadenosine (low) satisfaction of purA requirement326 L
adhCEEChloracetaldehyde resistance157
adhCEEChlorethanol resistance157
adhEEAllyl alcohol resistance476 L
adhEEthanol as C source132 C
alaSEThymineless death resistance in thyA394 S
alaSEMecillinam resistance (beta-lactam resistance)802 S
ampCEAmpicillin resistance139 570 D
ampCEAmpicillin resistance210 212 362 C
amtABSAminotriazole resistance828
apeAE, SN-Acetyl-L-phenylalanine-β-naphthyl ester hydrolysis421 516 L
aptE6-Methylpurine resistance60 L
aptEAdenine resistance in hpt gpt462
aptE2,6-Diaminopurine resistance in pnp470 L
aptE, S2,6-Diaminopurine resistance107 390 L
araBERibitol resistance from araC(Con)396 L
araCEFucose resistance (arabinose as C source)67 C
araCERibitol resistance from araC(Con)396 L
arcAEMale-specific phage resistance, also called fexA110 651 711 L
argAEAcetylornithine + uracil satisfaction of car (pyrA)153 L
argBEN-Acetylhistidine + ornithine satisfaction of his50 C
argBEAcetylornithine + uracil satisfaction of car (pyrA)153 L
argCEN-Acetylhistidine + ornithine satisfaction of his50 C
argCEAcetylornithine + uracil satisfaction of car (pyrA)153 L
argDE, SProline-independent growth of ∆proAB62 403 L
argDEAcetylornithine + uracil satisfaction of car (pyrA)153 L
argEEN-Acetylhistidine + ornithine satisfaction of his50 C
argEEAcetylnorvaline resistance in argR(Con)402 L
argHEN-Acetylhistidine + ornithine satisfaction of his50 C
argPECanavanine resistance483 655 L
argPEThiosine resistance293 716 L
argPECanavanine + thiouracil resistance605 L
argRE, SArginine-resistant, proline-independent growth of ∆pro62 403 C
argREAcetylhistidine satisfaction of his49 50 403 C
argREAcetylmethionine satisfaction of met402 C
argREIndospicine resistance454 C
argRECanavanine resistance482 523 C
argREGlycylglycyl-N-phosphonoacetylornithine resistance604 C
argRECanavanine + azauracil resistance605 C
argRECanavanine + thiouracil resistance605 C
argREAcetylnorvaline resistance in argR(Con)402
argSECanavanine resistance322 S
argSEMecillinam resistance (beta-lactam resistance)802 S
argTSHydrazino (α) imidazole propionic acid resistance432 433
aroAE, SGlyphosate resistance512 731 869 C, D
aroFEAmino(4)phenylalanine resistance504 C
aroFSFluoro(4)phenylalanine resistance270 729 C
aroGE, SMethyl(3)anthranilate resistance307 FBI, S
aroGEThienylalanine resistance215 FBI, S
aroGEFluorophenylalanine resistance351 FBI, S
aroHETryptophan analog resistance637 FBI, S
aroPE, SMethyl(5)tryptophan resistance12 94 288 303 393 437 438 439 L, C
aroPE, SFluoro(5)tryptophan resistance12 94 288 303 393 437 438 439 L
aroPE, SAzaserine resistance12 94 288 303 393 437 438 439 836 837 L
aroPE, SThienylalanine resistance12 94 288 303 393 437 438 439 L
aroPE, SFluorophenylalanine resistance12 94 288 303 393 437 438 439 L
aroPE, SAzaleucine resistance12 94 288 303 393 437 438 439 L
aroPE, SMethyl(5)tryptophan + thienylalanaine resistance12 94 288 303 393 437 438 439 L
aroTE, SIndole acrylic acid resistance769 L
aroTEMethyl(4)tryptophan resistance in aroP594 L
asmSMethionine sulfoxamine resistance188
atoBSDinitropyrene resistance590 L
atoCEButyrate as C source in fadR(Con)602 C
atoCEValerate as C source in fadR(Con)602 C
atoCEPenten(4)oate resistance in atoC(Con)669 L
atpA-atpEEUncoupler resistances, including DCCD225 226 229 355 537 L
atpA-atpEETributyl tin resistance355
atpA-atpEECCCP resistance355
atpA-atpEEPentachlorophenol resistance355
atpA-atpEEAuroventin resistance451 685 818 L
atpA-atpEEKanamycin resistance768 L
atpA-atpEENeomycin resistance392 L
atpA-atpEEAzide resistance355
atrSAcid resistance233
azaABEAzaserine resistance836
azlEAzaleucine resistance610
bglBCEArbutin as C source523 616 640
bglBCESalicin as C source523 616 640
bglTEMethyl(β)glucoside as C source686 C
bio operonEDehydrobiotin resistance206
bioPEDehydrobiotin resistance206 L
birAEDehydrobiotin resistance206 597
brnQEMethyl(o)threonine resistance278 L
brnQEValine resistance277 L
btuBEColicin E3 tolerance46 47 109 284 388 620
btuBE, SBf23 phage resistance46 47 109 284 388 528 620
bymAEMaltose utilization in malT327
cbtEChloroacetate(β) resistance68 L
cbtEColicin B tolerance623 L
cbtEColicin D tolerance623 L
cddEAza(5)-2′-deoxycytidine resistance196 L
cddE, SFluoro(5)deoxycytidine resistance53 579 L
celABCDFECellobiose as C source426
cetEColicin E2 tolerance201
cheSMigration in a chemotaxis gradient34
chlABDEGE, SChlorate resistance2 121 122 228 266 523 743 744 L
chlABDEELactate + fumarate as anaerobic energy source436 L
chlCSChlorate resistance45 L
chlEELactate + nitrate as anaerobic energy source799
chlEEBiotin sulfoxide utilization in chl bio180
cirAEColicin I resistance77 93 620 L
cirAESiderophore-beta-lactam conjugate resistance93 L
citECitrate as C source290
clsEDihydroxy(3,4)butyl-1-phosphonate resistance345 L
cmlAEChloramphenicol resistance48
cmlAETetracycline resistance523 638
coaAECoenzyme A feedback resistance789 790 FBI, S
codA(cod)E, SFluoro(5)cytosine resistance4 54 L
corABCDE, SCobalt resistance262 600 817
corABCDEManganese resistance600
corABCDENickel resistance817
cpdSSuccinate as improved C source8 530 L
cpdSCitrate as C source in presence of low cAMP8 L
cpdBEFluorouracil(5) and 3′-AMP resistance51 L
cpxAEAmikacin resistance629
cpxAEColicin A tolerance629
cpxAEKanamycin resistance768
cpxAEQ phage resistance508 711
cpxAESerine (L) as C source567
crgECold-resistant growth398
crpSFosfomycin resistance10 L
crpESerine (L) resistance in relA167 L
crpELambda phage + nalidixic acid resistance429 L
crpEStreptomycin + cAMP resistance31 L
crpELambda phage resistance with maltose and arabinose as C sources92 766 L
crpEcAMP + glucose 6-phosphate resistance1a L
crpEcAMP + glucose 6-phosphate + D-xylose + L-arabinose resistance1a L
crpEFluorouracil(5) + 5′-AMP + 3′-AMP resistance52 L
crpEOsmotolerance282 L
crpEBeta-lactam resistance362 L
crpEMecillinam resistance25 168 857 L
crpEUV light resistance627 L
crpERifampin resistance413 L
crpET6 phage resistance6 L
crrEThio(5)glucose resistance419 L
crrSMethylglucoside(α)-resistant utilization of glycerol in ptsHI563 L
cxmEXylose (D) + cAMP resistance1a L
cyaAELambda phage resistance with maltose and arabinose as C sources92 L
cyaAELambda phage + nalidixic acid resistance429 L
cyaAESerine (L) resistance in relA167 L
cyaASFosfomycin resistance10 L
cyaAEOsmotolerance282 L
cyaAEBeta-lactam resistance362 L
cyaAEMecillinam resistance25 168 857 L
cyaAEUV light resistance627 L
cyaAERifampin resistance413 L
cyaAET6 phage resistance6 L
cycAECycloserine (D) resistance150 646 813 L
cycAESerine (D) resistance689 L
cysASChromate resistance581 L
cysAESelenate resistance728 L
cysASAzaserine resistance340 689 L
cysBSChromate resistance340 L
cysBSAzide resistance227 C
cysBSSelenate resistance339 L
cysBENovobiocin resistance631 L
cysBSTriazole resistance227 C
cysBSAzaserine resistance340 L
cysCSAzaserine resistance340 L
cysCSChromate resistance581 L
cysDSAzaserine resistance340 L
cysDSChromate resistance581 L
cysESTriazole resistance in cysM717 825 C
cysESTriazole resistance341 C
cysEENovobiocin resistance631 L
cysGSAzaserine resistance340 L
cysHSAzaserine resistance340 L
cysHSChromate resistance581 L
cysISAzaserine resistance340 L
cysISChromate resistance581 L
cysJSAzaserine resistance340 L
cysJSChromate resistance581 L
cysKS, EAzaserine resistance340 827 L
cysKSAzide resistance147 227 L
cysKESelenate resistance230 L
cysKE, STriazole resistance147 227 826 827 L, C
cysKESelenite resistance230 L
cysLSSelenate resistance673 674
cysLSChromate + selenate resistance338
cysMSAzaserine resistance340 L
cytREUridine as C source, improved utilization546
dadAE, SChloro(β)-D-alanine resistance832 L
dadAE, SD-Amino acid satisfaction of amino acid auxotrophy428 831 C
dcmEAza(5)cytidine resistance247 L
dctEFluoro(3)malate resistance401 L
dctETartrate resistance687 L
dctSMalate (L) as improved C source745 D
deoAEDeoxyadenosine + fluorouracil resistance in upp3 L
deoAEThymidine resistance in deoC3
deoBEThymidine resistance in deoC3 651 L
deoBE, SThymineless death prevention by low thymine levels in thyA71 471
deoCEThymineless death prevention by low thymine levels in thyA325 471 651 L
deoDEDeoxy(2)adenosine resistance in deoC651 L
deoDEDeoxyadenosine + fluorouracil resistance in upp3 L
deoREInosine as improved C source546 C
deoRSDiamino(2,6)purine satisfaction of purine auxotrophy251
deoRSUridine resistance in thyA deoB71
dgdEArabitol (D) as C source in fuc849
dgoREKeto(2)-3-deoxygalactonate as C source144 C
dgsAEGlucosamine as anaerobic C source in ptsG652 L
dhuAE, SHistidine (D) satisfaction of his auxotrophs422 428 546
dhuASAzaserine + tryptophan resistance432
dldEVinylglycolate resistance696 L
dmlSMalate (D) as C source737
dnaBELambdoid phage mixture coinfection resistance259
dnaBEPhenethyl alcohol resistance494
dnaEEAcriflavin (acridine) resistance553 554 555
dnaEEGlobomycin resistance668 S
dnaJELambda phage induction, resistance to667 S
dnaJELambdoid phage mixture coinfection resistance257 259 S
dnaJEP2 phage + lambda phage coinfection resistance753 S
dnaKELambda phage induction, resistance to667 S
dnaKELambdoid phage mixture coinfection resistance257 259 S
dnaKEP2 phage + lambda phage coninfection resistance753 S
dnaPEPhenethyl alcohol resistance809
dorSDrug-resistant gene maintenance814
dppAE, SBacilysin resistance1 L
dppAE, SBialaphos resistance1 L
dppAE, SValine-containing dipeptide resistance1 L
dppAELysyl-2-aminoxypropionate resistance603 L
dppAEGlycylleucine resistance269 L
dppAEPhenylalanylleucine resistance269 L
dppAEGlycylvaline resistance in opp178 L
dsdAESucrose as C source5 L
dsdCESucrose as C source5
ebgAELactose utilization in ∆lacZ118 Q
ecfBESerine (L) as C source567 768
ecfBEKanamycin resistance567 768
ecfBENeomycin resistance608
ecfBEColicin K resistance608
eddEGluconate as C source in eda239 240 L
emrBECCCP resistance due to gene dosage472 D
emrBENalidixic acid resistance due to gene dosage472 D
emrBEThiolactomycin resistance due to gene dosage250 D
emrBEThiolactomycin resistance250
envBE, SMecillinam resistance359 587
envBEUV light resistance24
envME, SDiazoborine resistance63 S
envZEAmpicillin resistance362 363
envZEColicin L tolerance812
envZELambda phage resistance812
envZEMe1 phage resistance801
envZETPI phage resistance812
envZETuIa phage resistance801
envZEFreeze-thaw resistance112
envZEColicin (multiple) resistance626
eryCEErythromycin resistance599
eryDEErythromycin resistance830
exbBEAlbomycin resistance205
exbBEColicin I resistance283 624
exbBEColicin (other) resistance283 624
exbCEColicin B resistance624
exbCEColicin I resistance283 624
exbCEColicin (other) resistance283 624
exuREAldohexuronate resistance in eda612
exuREHexuronate as C course in noninducible exuR eda612 C
exuTEAldohexuronate resistance in eda612 L
fadBEThiolactomycin resistance (due to gene dosage)778 D
fadLET2 phage resistance in ompF+ or ompF70 534 L
fadREDecanoate as C source713 L
fbaEStreptozotocin resistance456 L
fepABCDGEColicin B resistance623 624 L
fepABDCGEColicin D resistance623 L
fhuAE, SAlbomycin resistance87 387 388 478 479 S
fhuASES18 phage resistance87 478 479 S
fhuAET1 phage resistance93 409 870 S, L
fhuAET5 phage resistance93 151 387 870 L
fhuAEΦ80 phage resistance151 387 409 870 L, S
fhuAEColicin M resistance151 387 409 L, S
fhuAEBeta-lactam conjugate resistance93 L
fhuBEAlbomycin resistance618 L
fliCE, SChi phage resistance347 349 416 417 513 710
fliCSProlonged static cultivation249
flrBSTrifluoroleucine resistance115 117
folAESulfonamide resistance607 697 S, D
folASTrimethoprim resistance405 654 718 719 S, D
folPESulfonamide resistance756 S
fruAEDeoxy(2)glucose-independent fructose utilization11
fruAEXylitol resistance614 639 L
fruAESorbose (L) resistance715 L
fts (generic)EFilter retention55
ftsZEUV irradiation resistance in lon373
ftsZEMethyl methanesulfonate resistance in lon373
ftsZENitrofurantoin resistance in lon252
fucAEPropanediol as C source287
fucAEEthyleneglycol as C source in propanediol utilizer79
fucAEFucose (L) as C source in propanediol utilizer287
fucAEXylitol as C source in propanediol utilizer848
fucAEArabinose (D) as C source450
furEManganese resistance300 C
fusAEFusidic acid resistance65 434 695 761 S
gabCEAminobutyrate as N source197
gadSEGlutamate as C source292 L
gal operonEGalactose utilization in the presence of thiomethylglucoside636 D
gal operonSDeoxy(2)galactose resistance9 552 L
gal operonEGalactose resistance in galU664 L
galCSGlucose as C source in ∆ptsHI613
galEE, SP1 phage infection of Salmonella sp. monitored by drug resistance527 L
galEEU3 phage resistance816 L
galESDeoxy(2)galactose resistance408 L
galESFelix O phage resistance334 527 591 833 L
galESP22 phage resistance334 527 591 833 L
galKSDeoxy(2)galactose resistance408 L
galKE, SGalactose resistance in galE569 752 L
galKEGalactose resistance in galT859 L
galKEGalactose resistance in galU664 L
galPSDeoxy(2)galactose resistance552 L
galREThiomethylgalactoside-independent utilization of galactose in galR(Con)108
galRSGlucose utilization in ∆ptsHI613
galREGalactose resistance in galT+K+E+/galT+K+E+ galU664
galTEStreptozotocin resistance456 L
galUEAmpicillin resistance212 L
galUEP1 phage resistance242 L
galUEU3 phage resistance816 L
galUSFelix O phage resistance334 L
garASGamma irradiation resistance346
garAEGlucarate (D) resistance in ppc647 L
garBSGamma irradiation resistance346
gatACDEFucitol resistance in galactitol-utilizing strains184 L
gatACDEDeoxy(2)galactitol resistance in galactitol-utilizing strains184 L
gatACDEArabitol utilization466 845
gatACDERibitol utilization466 845
gatACDEArbitol (D) resistance639 L
gleRSGlycylleucine resistance in ilv580
glnASHistidine(D) + glycylglutamine satisfaction of his auxotrophs819 L
glnAEMethylammonium resistance694 S
glnAEMethionine sulfoxamine resistance in glnG592 C
glnASGlutamyl(γ)hydrazide resistance518 871 S
glnFSGlutamyl(γ)hydrazide resistance433 L
glnHSGlutamyl(γ)hydrazide resistance433 L
glnPEGlutamine as C source433 501 820
glnPE, SMethionine sulfoxamine resistance37 501 L
glnPEGlutamyl(γ)hydrazide resistance501 821 L
glnPEGlutamine (D) resistance501 L
glnVECaffeine resistance185 S
glpDEStreptozotocin resistance456 L
glpFEGlyceraldehyde (L) resistance762 L
glpKEGlyceraldehyde (L) resistance762 L
glpKE, SMethyl(α)glucoside-resistant glycerol utilization in ptsI64 665
glpTE, SFosfomycin resistance10 29 313 707 800 L
glpTEGlyceraldehyde (DL) 3-phosphate resistance762 L
glpTEArsenate resistance838 L
glpTEDihydroxybutyl phosphonate resistance285 453 L
glpTEFluorohydroxyacetone phosphate resistance515 L
glpTEChlorohydroxyacetone phosphate resistance515 L
glpTEGlycerol 3-phosphorothioate resistance295 L
gltAEImproved growth in icd435 L
gltHEGlutamate as C source496 497 687
gltREGlutamate as C source at 42°C497
gltSEGlutamate as C source496 687 Q
gltSEGlutamate as C source496 497 687
gltSEGlutamate (D) resistance in gltS (increased)525 716 L
gltSEMethyl(α)glutamate resistance in gltS (increased)391 525 716 L
gltSEHomocysteic acid resistance213 L
gltXEGlutamyl-γ-methyl ester resistance425
glyAESerine + methionine + glycine resistance in relA783
gntMEGlycerol + gluconate as C source in eda217 L
gntREAcetate + gluconate as C source in ppc39
gntSEAcetate + gluconate as C source in ppc39 L
gorEMethyl viologen tolerance430 L
gprABELambda phage resistance578 670
gptSAza(8)guanine resistance272 764 L
gptESulfanilamide resistance in presence of guanine97 L
groMET7 phage resistance427
grpDELambda mutant prophage induction, survival of667
grpEELambda mutant prophage induction, survival of667
gsh (generic)ENitrosoguanidine resistance693 L
gsh (generic)EMethylglyoxal resistance548
gshABE, SSelenite resistance423 L
guaABEPsicofuranine resistance779
guaBSFluoro(5)uracil + fluoro(5)uridine resistance367 L
gurBCDEGlycerol + methylglucuronide a C source in eda572 L
gyrAE, STriazolealanine + aminotriazole resistance660 S
gyrAE, SNalidixic acid resistance200 298 S
gyrAEQuinolone resistance860 S
gyrAEOxolinic acid resistance734 S
gyrAEGlucosides (β) as C source194
gyrASThermotolerance200
gyrBSTriaolealanine + aminotriazole resistance660 S
gyrBEAminotriazole resistance in relA772 S
gyrBENovobiocin resistance255 S
gyrBECoumermycin resistance181 255 593 D, S
gyrBEChlorobiocin resistance589
gyrBEGlucosides (β) as C source194
gyrBELambda mutant infection resistance521
gyrBENalidixic acid resistance333 855 S
hemEStreptomycin resistance57 L
hemAEKanamycin resistance585 L
hemAE, SNeomycin resistance683 L
hemBEKanamycin resistance585 L
hemBEKanamycin-resistant, hemin-supported growth of hemA507 L
hemBEColicin K-type tolerance83
hemCSNeomycin resistance682 L
hemDSNeomycin resistance681 L
hemESNeomycin resistance189 680 L
hemBCFEPlate method506 L
hemGENeomycin resistance679 L
hemLEKanamycin resistance350 L
hflCELambda mutant phage resistance56
hflKELambda mutant phage resistance56
hflXELambda mutant phage resistance56
himAEMu prophage induction, survival of520 522
himAEMu phage lytic growth resistance81
himAELambda mutant phage infection, survival of519 521
himA (himC)ELambda mutant phage resistance519 521
himDEMu prophage induction, survival of520 522
himDEMu phage lytic growth resistance81
hipAECycloserine resistance541
hipAEAmpicillin resistance541
hipAEFosfomycin resistance541
hipQENorfloxacin resistance842
hipQEAmpicillin resistance842
his structural genesE, STriazolealanine + aminotriazole resistance98 126 658 C, Q
his structural genesSAminotriazole resistance20 21 D
his structural genesSGrowth at 42°C in his-overexpressing strain804 Q
his structural genesSHistidinal satisfaction of his auxotroph requirement at 30°C374 375 Q
his structural genesSHistidine (D) satisfaction of his auxotroph requirement374 375 Q
hisGE, SThiazolealanine resistance540 698 824 S, FBI
hisGSHydrazino (α) imidazole propionic acid resistance699 S, FBI
hisGSHistidinal satisfaction of his auxotroph requirement at 30°C374 375 L
hisGSHistidine (D) satisfaction of his auxotroph requirement374 375 L
hisGEHistidine-resistant adenine → guanine nucleotide33 S,FBI
hisJSHydrazino (α) imidazole propionic acid resistance13 15 L
hisJSAzaserine + tryptophan resistance in dhuA15 432
hisPSHydrazino (α) imidazole propionic acid resistance in dhuA14 15 L
hisPSArginine as N source13 15 432 D
hisQSHydrazino (α) imidazole propionic acid resistance13 15 L
hisRSTriazolealanine + aminotriazole resistance658 Q
hisRSThiazolealanine resistance706 Q
hisRSMethyl(2)histidine resistance + aminotriazole resistance658 Q
hisSSTriazolealanine + aminotriazole resistance658 S
hisSSThiazolealanine resistance657 S
hisTE, STriazolealanine + aminotriazole resistance98 148 658 705 784 L
hisTEAzaleucine resistance98 784 L
hisTESerine resistance98 784 L
hisTSAmino(3)tyrosine resistance148 658 705 L
hisTSThialysine resistance148 658 705 L
hisTSTrifluoroleucine resistance148 658 705 L
hisTSNorleucine resistance148 658 705 L
hisTSHydroxy (β) leucine resistance148 658 705 L
hisTEPhenyl galactoside resistance of lacP lacI (nonsense) supE747
hisUS, ETriazolealanine + aminotriazole resistance23 660
hisUSNalidixic acid resistance593 660
hisWS, ETriazolealanine + aminotriazole resistance23
hisWSCoumermycin resistance593 660
hptEMercapto(6)purine resistance in gpt371
hptESulfanilamide + hypoxanthine resistance97 L
hsdELambda vir resistance after infection with183 L
hsdSLactose utilization after conjugation of Flac into Salmonella sp.103 L
hutSHistidine as sole N or C source509
icdEE, SNalidixic acid resistance91 311 L
iclREButyrate or valerate as better C source602 C
iclREGlucose or glycerol as C source in ppc488
ileRETrifluoroleucine resistance412
ileSEPseudomonic acid resistance858 S
ileSEThiaisoleucine resistance757 S
ilv structural genesSSulfometuron methyl + valine resistance872 C
ilv structural genesEAminobutyrate resistance633 780 C
ilv structural genesEValine resistance268 C
ilv structural genesSCyclopentane glycine resistance586 C
ilvASCyclopentane glycine resistance586 S, FBI
ilvAEGlyclleucine resistance806 S, FBI
ilvASThreonine as sole N source106 S, FBI
ilvAEGrowth on minimal medium of ilvA+ (multicopy) ilvDC hisT overcoming 2-ketobutyrate accumulation231 L
ilvBEAminobutyrate resistance633 780 S, FBI
ilvBEValine resistance633 755 S, FBI
ilvBEGlyclleucine resistance269 S
ilvBEPhenylalanylleucine resistance269 S
ilvFEValine resistance174 610 G
ilvGE, SSulfometuron methyl + valine resistance441 851 872 S, Q
ilvGEValine resistance221 448 720 G
ilvHEAminobutyrate resistance633 780 S, FBI
ilvHEValine resistance633 755 S, FBI
ilvHEGlyclleucine resistance269 S
ilvHEPhenylalanylleucine resistance269 S
ilvIEAminobutyrate resistance633 780 S
ilvIEValine resistance633 755
ilvIEGlyclleucine resistance269
ilvIEPhenylalanylleucine resistance269
ilvJEValine resistance174 361 649 G
ilvUEThiaisoleucine resistance222
kdgREKeto(2)-3-deoxygluconate as C source377 615 C
kdsAS9NA phage resistance in galE452 641
ksgAEKasugamycin resistance312 726 793 L
ksgBEKasugamycin resistance238 726
ksgCEKasugamycin resistance861
ksgDEKasugamycin resistance238
lacEGrowth in lactose-limited chemostats330 D
lacI,operatorEMethyl(α)glucoside-resistant utilization of lactose in ptsH665 C
lacI,operatorERaffinose as C source459 C
lacI,operatorENeolactose as C source459 C
lacI,operatorEPhenyl galactoside as C source523 C
lacI,operatorELactobionic acid as C source440 C
lacI,operatorELactitol as C source457 C
lacI,operatorEMelibiose as C source475 C
lacIoperatorEMelibiose as C source and acetyl(N)lactonate as N source475 C
lacI,operatorELactobionic acid as C source474
lacI,operatorEAcetyl(N)lactonate as N source474 Q
lacI,operatorENitro(o)-phenylthiogalactoside resistance in lacI(Con) or lacO(Con)543 571 Q
lacI,operatorEMethyl(α)glucoside-resistant lactose utilization406 C
lacYENitro(o)-phenylthiogalactoside resistance523 543 721 L
lacYEPhenyl galactoside resistance376 L
lacYEPhenethylyl galactoside resistance376 L
lacYEArabinose (L) growth in the presence of lac operon inducer812 L
lacYEThiodigalactoside resistance241
lacZELactobionic acid as C source440 D
lacZEPhenyl galactoside resistance376 500 L
lacZEPhenethylyl galactoside resistance376 500 L
lacZENitro(o)-phenyl galactoside resistance376 500 L
lamBELambda phage resistance88 134 135 253 644 766 L, S
lamBEK10 phage resistance644
lamBEThio(5)maltose resistance223 L
lctEVinylglycolate resistance696
leuASTrifluoroleucine resistance115 FBI, S
leuJETrifluoroleucine resistance575
leu(structural genes)STrifluoroleucine resistance115 116 C
leuSS, EAzaleucine resistance477 514 S
leuSSTrifluoroleucine resistance7 S
leuWECalmodulin inhibitor resistance129 S
levELevallorphan resistance164
lexAEMitomycin C resistance of recA (SOS-induced) sfi lexA3(Con)538 L
ligET4 phage lig mutant nibbling of colonies yielding lig overproducer254 Q
ligET4 phage lig mutant resistance from lig overproducer254 L
linBELincomycin resistance26 343
litET4 mutant phage resistance143
livGEAzaleucine resistance303 561 L
livHEValine resistance in leu17 595 L
livHEAzaleucine resistance561 L
livJEValine resistance in leu17 595 L
livKEValine resistance in leu17 595 L
lonE, SChlorpromazine resistance198 529 L
lonEPromethazine resistance529 L
lppEGlobomycin resistance140 344 854 868 L
lpcAET3 phage resistance792 L
lpcAET4 phage resistance792 L
lpcAET7 phage resistance792 L
lpcAEP1 phage resistance40 41
lpcBET4 phage resistance760
lpcBET7 phage resistance760
lrpELeucine (D) satisfaction of leu auxotrophs18 428
lysCEAminoethylcysteine (thialysine) resistance82 765 S, FBI
lysCELysine hydroxamate resistance82 765 S, FBI
lysPEAminoethylcysteine (thialysine) resistance611 736 L
lysSEAminoethylcysteine (thialysine) resistance323 S
lysSEPhenyl galactoside resistance of lacI q lacI(nonsense) lacP supL748
lytEBeta-lactam tolerance700
macEErythromycin growth dependence725
malEE, SMethylglucoside(α)-resistant utilization of maltose665
malEEThio(5)maltose resistance223 L
malFE, SMethylglucoside(α)-resistant utilization of maltose665
malFEThio(5)maltose resistance223 L
malGE, SMethylglucoside(α)-resistant utilization of maltose665
malGEThio(5)maltose resistance223 L
malKELambda phage resistance766 L
malKE, SMethylglucoside(α)-resistant utilization of maltose177 665
malKEThio(5)maltose resistance223 L
malPEMaltose as C source in malT327
malQEMaltose as C source in malT327
malTELambda phage resistance766 L
malTEThiomaltose resistance223 L
manAEStreptozotocin resistance456
manCELyxose (D) as C source738
manXYZEPhage N4 resistance410
manXYZEDeoxyglucose resistance158 379 L
marAEMenadionine resistance274
marAEChloramphenicol resistance286
marAETetracycline resistance286 329
mbrABCDECamphor resistance776 777
mdoBEArbutin resistance in dgk360 L
mel (generic)ERaffinose as C source in lacI459
mel (generic)SMethylglucoside(α)-resistant utilization of melibiose665
melBEDeoxy(2)glucose-resistant utilization of melibiose431 S
melBELithium-resistant utilization of melibiose397 S
metASMethyl(α)methionine resistance127 447 FBI, S
metC (ecfA?)ENeomycin resistance464
metC (ecfA?)EColicin K resistance465
metC (ecfA?)EChloro(β)alanine resistance832
metGEEthionine resistance28 S
metJE, SEthionine resistance447
metJEGlutamyl-γ-methyl ester resistance425 S
metJE, SNorleucine resistance128
metJEMethionine sulfoximine + methyl(α)methionine resistance386 S
metKE, SEthionine resistance275 289 447 735 S
metKEGlutamyl-γ-methyl ester resistance425 S
metKE, SNorleucine resistance128 447 735 S
metKSMethyl(α)methionine resistance447 735 S
metLEHydroxy (β) norvaline resistance138 S, FBI
metPDE, SMethyl(α)methionine resistance37 38 386 L
metPDE, SMethionine sulfoximine resistance37 38 386 L
mglAEFucose + arabinose-supported growth in galP209 613
mglBEFucose + arabinose-supported growth in galP209 613
mglCEFucose + arabinose-supported growth in galP209 613
mglDEMethyl-β-galactoside-supported growth645 C
mngEManganese resistance708
mopAET4 phage resistance258 S
mopBET4 phage resistance258 S
motABEChi phage resistance349 709 710
mrbEFosfomycin resistance800
mrdAEMecillinam resistance759
mrdBEMecillinam resistance358 502 759
mreBCDEMecillinam resistance582 807
mtlAEArabinitol (D) resistance614 L
mtlCEMannitol (limiting) as C source722 C
mtrEMethyl(5)tryptophan resistance305 320 523 L
murZEFosfomycin resistance due to increased gene dosage499 D
mut (generic)EStreptomycin resistance309
mut (generic)EAzaserine resistance703
mut (generic)EChemostat growth152
mutHEAmino(2)purine resistance in dam267 L
mutLEAmino(2)purine resistance in dam267 L
mutSEAmino(2)purine resistance in dam267 L
mvrCEMethyl viologen resistance532 D
nadBSAmino(6)nicotinamide resistance142 336 S
nadDSAmino(6)nicotinamide resistance336 337 L
nagAEStreptozotocin resistance456 L
nagAEIodoacetylglucosamine resistance823 L
nagBEIodoacetylglucosamine resistance823 L
nagEEStreptozotocin resistance456 L
nagEEIodoacetylglucosamine resistance823 L
nagEEDeoxy(2)-2-iodoacetamideoglucose resistance379 L
nalBENalidixic acid resistance298
nalDENalidixic acid resistance333
nar (general)EMetronidazole resistance677 L
narCEChlorate resistance266 280 L
narGEChlorate resistance739 L
narHEChlorate resistance739 L
ndkSAza(8)guanine resistance264 650
neaBE, SNeamine resistance119 182 495
nekEAminoglycoside resistance27 342
nfnAENitrofurantoin resistance684
nfnBENitrofurantoin resistance684
nfsAENitrofuranzone resistance90 505
nfsBENitrofuranzone resistance90 505
nhaAELithium resistance (multicopy)628 D
nolSNorleucine resistance324
novENovobiocin resistance630
nrdAEHydroxyurea resistance609 D
nrdBEHydroxyurea resistance609 D
nupCEShowdomycin resistance415 545 L
nupCEFluorouracil resistance544 L
nupCEFluorodeoxyuridine resistance545 L
nupCEFluoruridine resistance544 L
nupCEFluorodeoxycytidine resistance544 L
nupGEFluorouracil resistance544 L
nupGEFluorodeoxyuridine resistance545 L
nupGEFluorouridine resistance544 L
nupGEFluorodeoxycytidine resistance544 L
nusAELambda prophage induction, survival of244
nusBELambda prophage induction, survival of245 260
nusBELambdoid phage resistance260
nuvAE, SNear-UV irradiation resistance424 468 767 L
nuvCENear-UV irradiation resistance663
ompAEK3 phage resistance306 489 491 493 L
ompAET-even-like phage resistance199 533 535 S
ompAETuII* phage resistance171 314 493 L
ompAEOx2 phage resistance199 493 642
ompAEBacteriocin JF246 resistance124 491
ompASBacteriocin 4-59 resistance741 L
ompAEColicin K tolerance491
ompAEColicin L tolerance491
ompAEChelator resistance493
ompAENovobiocin resistance493
ompBSPH51 phage resistance372
ompBSPH105 phage resistance372
ompCEMe1 phage resistance791 801 L
ompCETuIa phage resistance801 L
ompCSPH51 phage resistance372 L
ompCSPH105 phage resistance372 L
ompCEHost range Serratia marcescens phage resistance702
ompDSPH51 phage resistance741 L
ompDSBacteriocin 4-59 resistance741 L
ompFEBeta-lactam (ampicillin, cefoxitin) resistance362 363 L
ompFEChloramphenicol resistance235 523 L
ompFETetracycline resistance235 523 L
ompFEFluoro(5)uracil + nucleotide resistance52 L
ompFEColicin A tolerance125 235
ompFECloacin DF13 resistance846 L
ompFEColicin L tolerance235 291 L
ompFEColicin K tolerance235 L
ompFEColicin E2 tolerance235
ompFEColicin E3 tolerance235
ompFEMe1 phage resistance801 L
ompFETuIa phage resistance801 L
ompFETuIb phage resistance237
ompFSPH51 phage resistance372 L
ompFSPH105 phage resistance372 L
ompFECopper resistance in ompC480
ompREMe1 phage resistance801
ompRETuIa phage resistance801
ompRECopper resistance52 625
ompREBeta-lactam (ampicillin, cefoxitin) resistance362 363 L
ompREChloramphenicol resistance625
ompREFluoro(5)uracil + nucleotide resistance52
oppAE, STriornithine resistance43 317 L
oppAEGlycylleucine resistance806 L
oppAEAlanyl-2-aminopropionate resistance603 L
oppAE, STrilysine resistance317 L
oppAE, SNorleucylglycyl glycine resistance317 L
oppASGlycylglycyl histidinol phosphate ester resistance317 L
oppAE, SPhaseolotoxin resistance733 L
oppAETripeptide (toxic amino acid containing) resistance604 L
oppAEGlycylglycyl-N-S-(phosphonoacetyl)-L-ornithine resistance604 L
oppEETripeptide (toxic amino acid containing) resistance22 L
optAET7 phage gene 1.2 mutant resistance666
osmBEOsmotolerance384 L
osmZEArbutin as C source179
osmZESalicin as C source179
oxyRE, SPeroxide resistance131 C
pabESulfonamide resistance97 C
panESalicylate resistance481 C
panEHydroxyaspartate resistance701 C
panEPentylpantothenamide resistance136 C
pdxEIsoniazid resistance186 C
pepASAlafosfalin resistance263 L
pepAE, SPeptide (toxic, valine containing) resistance in pepN517 L
pepDE, SPeptide (toxic, valine containing) resistance in pepN pepA517 L
pepNE, SAlbomycin resistance86 L
pepNE, SPeptide (toxic, valine containing) resistance517 L
pepNE, SIndicator plate445
pepQE, SPeptide (toxic, valine containing) resistance517 L
pfkAEStreptozotocin resistance456 L
pgiEU3 phage resistance816 L
pgiEFosfomycin + fructose-6-phosphate resistance243 L
pgmEU3 phage resistance816 L
pheAEFluoro(4)phenylalanine resistance351 564 C, FBI
pheRSFluoro(4)phenylalanine resistance271 C
pheSEFluoro(4)phenylalanine resistance78 218 395 S
pheSEThymineless death resistance in thyA394 S
pheUSFluoro(4)phenylalanine resistance729
phoSGlycerol(β)-phosphate as C source in the presence of high phosphate407 C
phoAEFluoro(5)uracil + adenosine resistance in upp, phoS, or phoT315
phoAEGlycerol(β)-phosphate as C source in the presence of high phosphate773 C
phoAEGlycerol(β)-phosphate resistance in glpD678
phoBETellurite resistance770
phoBETC45 phage resistance771 L
phoBEFluoro(5)uracil + adenosine resistance in upp, phoS, or phoT316
phoEEAcid resistance659 D
phoEETC45 phage resistance420 771 S, L
phoREArsenate resistance852
phoREGlycerol(β)-phosphate as C source in the presence of high phosphate204 838
phoRETC45 phage resistance621 S
phoSEArsenate resistance852
phoSEGlycerol(β)-phosphate as C source in the presence of high phosphate204 838
phoSETC45 phage resistance621 S
phoTEArsenate resistance852
phoTEGlycerol(β)-phosphate as C source in the presence of high phosphate204 838
phoTETC45 phage resistance621 S
phrET1 phage (UV irradiated) resistance332 L
phxBEφX174 phage resistance547 L
pitEArsenate resistance59 727 L
pldAEActinomycin D resistance in the presence of EDTA301 805 L
pmiSP22 phage resistance656 833 L
pmiS9NA phage resistance656 833 L
pmrAE, SPolymyxin resistance219 297 485 785 786 787 788
pmrASNeutrophil granule protein resistance219
pncAE, SAmino(6)nicotinamide resistance234 455 822 L
pncAENicotinamide as sole N source598 Q
pncBE, SAmino(6)nicotinamide resistance234 455 L
pncBE, SAmino(6)nicotinate resistance234 455 L
pncXSAmino(6)nicotinamide resistance336
pnpEShowdomycin resistance58
polAELambda γ mutant phage resistance867 L
praA,BSP221 phage resistance576 674 L
praA,BSPH51 phage resistance576 L
praA,BSPH105 phage resistance576 L
prbA,BSES18 phage resistance674
prdBSPH51 phage resistance674
prfAEPhenylgalactoside resistance of lacP lacI(nonsense) supE747
prfBENegamycin resistance145
prhSHK009 phage resistance674
prkSHK068 phage resistance674
proABSOsmotolerance155
proAENitro(4)pyridine N-oxide resistance62 222 321 L
proBE, SDehydroproline resistance62 155 635 FBI, S
proBENitro(4)pyridine N-oxide resistance62 222 321
proBE, SAzetidine carboxylate resistance62 155 635 FBI, S
proPE, SDehydroproline resistance in putA putP156 732 L
proUSDehydroproline + azetidine carboxylate resistance at high osmolarity in putA putP156 L
prpEPropionate as C source400 Q
pspABCDEESulfanilamide + hypoxanthine resistance97
pssEEthanol resistance133
pssEDimethyl sulfoxide resistance133
pstABCSEArsenate resistance727 838 L
pstABCSETC45 phage resistance621 S
ptaSFluoroacetate resistance96 281 463 797
pts (general)EGlucose + gluconate-independent motility30
ptsGEMethyl(α)-glucoside resistance102 104
ptsGESorbose resistance715 L
ptsGE, SDeoxy(2)glucose-independent utilization of fructose418 510 L
ptsGE, SDeoxy(3)-3-fluoroglucose-independent utilization of fructose418 510 L
ptsGEMethyl(α)-glucoside-independent lactose + mannitol utilization80 L
ptsGEGlucosamine as C source379
ptsGEMannose as C source379
ptsHIE, SDeoxy(3)-3-fluoroglucose-independent utilization of lactate510 L
ptsHIE, SFosfomycin resistance146 800 L
ptsHIEStreptozotocin resistance16 873 L
ptsIEAmpicillin resistance212
ptsISDeoxy(3)-3-fluoroglucose resistance510 L
purAEMethyl(6)purine + hypoxanthine resistance60
purBENalidixic acid resistance310 L
purREAdenine resistance in hpt gpt461 462
putAE, SAzetidine carboxylic acid resistance511 635 775 L
putAPSBaikiain resistance in constitutive background187 L
putASProline as N source with glucose as C source566
putPE, SDehydroproline resistance193 511 635 732 775 843 L
putPE, SAzetidine carboxylic acid resistance193 511 635 775 843 L
putPSLithium-resistant proline utilization as C source551 S
puvAEPsoralen + UV irradiation resistance328 C
pyrBSArginine-independent growth of pyrH in the presence of uracil366 L
pyrCSArginine-independent growth of pyrH in the presence of uracil366 L
pyrDSArginine-independent growth of pyrH in the presence of uracil366 L
pyrFEFluoro(5)orotic acid resistance74 L
pyrHSFluoro(5)orotic acid resistance865 C
pyrHSFluorouracil resistance385 C
pyrHSFluorouridine resistance385 C
pyrHEFluoro(5)uracil + 5-fluorouridine resistance in udp606
qmeACDEEGlycine tolerance829
rapELambda phage resistance279
recAELambda prophage induction deficiency during thymine deprivation190
recFEThymineless death resistance in thyA558
recJEThymineless death resistance in thyA558
recOEThymineless death resistance in thyA558
recQEThymineless death resistance in thyA557
relAEUV (near) irradiation resistance632 L
relAESerine resistance in relA167
repEP2 phage resistance113
rfa (general)E, SU3 and FO phage resistance35 484 486 588 833
rfa (general)E, SAmpicillin resistance212 550 562
rfa (general)SHemin satisfaction of hemA auxotrophy364
rfa (general)SCephalothin resistance562
rfa (general)SBacitracin resistance562
rfaCDEFSFO phage resistance676
rfaDEC21 phage resistance141
rfaDEP1 phage resistance141
rfaHSFO phage resistance458 675
rfaPEU3 phage + K3 phage coresistance601
rfbSDCCD resistance in rfa833
rhoET4 phage resistance740
rhoELambda sus N7 nin-5 resistance in P2 lysogen352 353
rhoE, SPolarity suppression of gal leader insertion169 331
ridAERifampin + kasugamycin dependence162
ridBERifampin dependence160
rplCETiamulin resistance73
rplDEErythromycin resistance725 840 S
rplEEThiopeptin resistance467
rplFEGentamicin resistance101 S
rplKEKasugamycin resistance159
rplKEDAP starvation of ∆(mal-asd) in the presence of serine, methionine, and glycine165
rplNEKasugamycin resistance159
rplNELincomycin resistance343
rplOELincomycin resistance343
rplVEErythromycin resistance840
rpoAEP2 vir1 phage resistance754 S
rpoBELambda cII + rifampin coresistance296 S
rpoBEStreptovaricin resistance863 S
rpoBERifampin resistance216 359 369 S
rpoBEStreptolydigin resistance357 469 688 S
rpoBSFluorouracil resistance368 S
rpoBELambda phage + 434 phage cross-resistance256 S
rpoBELambda Nmar mutant phage resistance261 S
rpoBESerine resistance in relA784 S
rpoBERifampin resistance in rpoB+/rpoB (rif) merodiploids36 L
rpoBET7 phage resistance690 S
rpoCET7 phage gene 2 resistance100
rpoDELambda cI71 resistance556
rpoDEArabinose (L) as C source in cya or crp712 S
rpoHETemperature resistance in rpoD(Ts)577 S
rpsBEKasugamycin resistance583 861 S
rpsBECold resistance in rpsE cold-sensitive mutants559
rpsCESpectinomycin resistance and sucrose dependence195 S
rpsDESpectinomycin resistance and sucrose dependence195 S
rpsDEStreptomycin independence of streptomycin-dependent rpsL304
rpsEESpectinomycin resistance and sucrose dependence195 526 S
rpsEE, SSpectinomycin resistance172 495 634 672 853 S
rpsEEStreptomycin independence of streptomycin-dependent rpsL304
rpsGELincomycin resistance343 S
rpsIEKasugamycin resistance and dependence161 163 S
rpsJELambda prophage induction, resistance to170 246 S
rpsLE, SStreptomycin resistance89 495 853 S
rpsLENeamine dependence798
rpsLEParomomycin resistance or dependence853 S
rpsLEPhenyl galactoside resistance of lacP lacI (nonsense) supE747
rpsMEKasugamycin resistance159
rpsQENeamine resistance76 119 S
rpsREKasugamycin resistance159
rrnEErythromycin resistance704 S
rrnEChloramphenicol resistance704 S
rrnESpectinomycin resistance704 S
sbaAESerine resistance166
sbmAEMicrocin B17 resistance446
sdhESuccinate-independent growth in lpd154
secAE, SAzide resistance227 232 584 808 864
secAEPhenethyl alcohol resistance808 864
semAEMicrocin E492 resistance622
serAESerine hydroxamate resistance774 FBI, S
serSESerine hydroxamate resistance774 S
sidCFSAlbomycin resistance87 478 479 674
sidKSAlbomycin resistance87 478 479 674
sidKSES18 phage resistance87 478 479 674
sloBENalidixic acid tolerance473
sloBEAmidinopenicillin tolerance473
sorATESorbose (L) as C source in crosses with wild strains844
spcBSSpectinomycin resistance853
srlAESorbitol + xylitol resistance639 L
srlDEFructose as C source in ptsF or ptsM378
sspAEP1 phage resistance835 L
strBSStreptomycin resistance273 853
strCSStreptomycin resistance648
strMEStreptomycin resistance671
strMEPhenyl galactoside resistance of lacIq lacI(nonsense) lacP supL748
sulAEUV irradiation resistance in lon373 L
sulAEMethyl methanesulfonate resistance in lon373 L
sulAENitrofurantoin resistance in lon252 L
tabCET4 phage resistance258
tctSFluorocitrate resistance724 L
tctSTrifluorocitrate resistance723 L
tctS2-Fluoro-L-erythrocitrate resistance32 L
tdkE, SAzidothymidine resistance207 L
tdkSFluorodeoxyuridine + uracil resistance in deoA54
tdkEFluoro(5)deoxyuridine resistance749 L
tdkEBromo(5)deoxyuridine + UV irradiation resistance319 348 L
tetE, SFusaric acid resistance72 487 L
tetSQuinaldic acid resistance72 L
thdAEDapsone resistance383
thiEPyrithiamine resistance399 C
thrAE, SThialysine resistance365 S, FBI
thrAESerine resistance294 S, FBI
thrABCEAmino(2)-hydroxy(3)-pentoate resistance847 D
thrSEBorrelidin resistance248 276 560 596 S, Q
thyAE, SAminopterin resistance66 123 325 730 L
thyAETrimethoprim resistance66 730 L
tinA (tlr)E, SThiolutin resistance381 382 714
tmkEDideoxy(2′,3′)thymidine resistance176 S
tnaAETryptophan-supported growth at 13°C568 C
tnaEIndole + methyl(5)tryptophan-supported, glucose-resistant growth in ∆trp862
tolEBacteriocin tolerance85 120 173 236
tolQABEColicin E1 resistance449
tolQABETuIa phage resistance449
tolBEColicin E resistance19 L
tolBEAzaleucine resistance19 L
tolCEColicin E1 tolerance536 653 L
tolDEColicin E2 and E3 tolerance210
tolDEAmpicillin resistance105 210
tolEEColicin E2 and E3 tolerance210 211
tolEEAmpicillin resistance210 211
tolIEColicin Ia and Ib tolerance120
tolJEColicin L, A, and S4 tolerance173
tolMEColicin M tolerance302
tolQEColicin group A tolerance84a 750
tolQEFilamentous phage tolerance84a 750
tolREColicin group A tolerance84a 750
tolREFilamentous phage tolerance84a 750 751
tolZEColicin E2, E3, D, 1a, and 1b tolerance503
tonBSES18 phage resistance149 741
tonBET1 phage resistance46
tonBEφ80 phage resistance46
tonBEColicin B resistance46 623
tonBE, SAlbomycin resistance85 505 741
tonBEColicin M resistance85 523
tonBSBacteriocin 4-59 resistance741
tonBECephalosporin E-0702 resistance815
topASKanamycin resistance202
topASNeomycin resistance202
topASStreptomycin resistance202
tppEAlafosfalin resistance603 L
tppETriornithine resistance in opp44 L
tppASTripeptide (toxic) resistance263
tppBSTripeptide (toxic) resistance263
trmE?EPhenyl galactoside resistance of laclq lacI(nonsense) lacP supL748
trp (generic)E, SFluoro(6)tryptophan resistance42 318 C
trp (generic)E, SMethyl(5)tryptophan resistance42 318 C
trpEE, SMethyl(5)tryptophan resistance114 539 S, FBI
trpEEMethyl(3)anthranilate resistance308 S, FBI
trpRE, SMethyl(5)tryptophan resistance42 137 523 746
trpREChuangxinmycin resistance850
trpSEIndolmycin resistance75 D
trxAET7 phage resistance498 L
trzASTriazole resistance339
tsxET6 phage resistance99 299 490 492 620 L, S
tsxEColicin K resistance99 299 490 492 620 L, S
tsxEAlbicidin resistance69
tufABEKirromycin resistance220 356 763 795
tufABE, SMocimycin resistance335 794
tynSTyramine as N source549
tyrAE, SFluorophenylalanine resistance270 729 C
tyrAEAmino(4)phenylalanine resistance504 C
tyrRE, SAmino(4)phenylalanine resistance95 504 811
tyrREFluorotyrosine resistance130
tyrRSFluoro(4)phenylalanine resistance729
tyrSEFluorotyrosine resistance662 S
ubi (generic)ENeomycin resistance265 L
ubiFSFluoro(5)uracil + carbamylaspartate resistance404 866 L
ubiFEGentamicin resistance542
ubiFEStreptomycin resistance542
udhASFluoro(5)uridine resistance834 L
udkEFluoro(5)uridine + uracil resistance380 L
udkEFluoro(5)uridine resistance in upp565 L
udpEFluoro(5)uracil + adenosine resistance606 617 L
ugpABEFluorohydroxyacetone phosphate resistance515 L
ugpABEDihydroxybutylphosphonate resistance in glpT691 692 L
ugpABEGlycerol-3-phosphate as C source in glpT691 C
uhpREGlucosamine 6-phosphate as C source191 C
uhpRSGlucose 1-phosphate as C source192 C
uhpREFructose 1-phosphate as C source224 C
uhpTEChloro-3-hydroxyacetone resistance in uhp(Con)515 L
uhpTEFluoro-3-hydroxyacetone resistance in uhp(Con)515 L
uhpTEDihydroxybutylphosphonate resistance in uhp(Con)285 L
uhpTEHydroxybutylphosphonate resistance in ubp(Con)285 L
uhpTEDeoxydihydroxyphosphonyl methyl fructose resistance285 L
uhpTEL-Glyceraldehyde-3-phosphate resistance in uhp(Con)285 L
uhpTEFosfomycin resistance230 389 800 L
uhpTEDeoxy(2)glucose-6-phosphate resistance214 L
uidAEGalacturonide as C source742 C
uidAEMethylgalacturonide as C source573 C
uidAEMethylglucuronide + glycerol-supported growth in eda572 L
uidREGalacturonide as C source742 C
uidREMethylgalacturonide as C source573 C
ungEBromodeoxyuridine + UV light resistance856 L
ungET4 phage (uracil containing) resistance203 L
uppE, SFluoro(5)uracil resistance53 605 617 L
uppEAza(6)uracil resistance605 617 L
uppECanavanine + aza(6)uracil resistance605 617 L
ushAEFluoro(5)uracil + 5′-AMP resistance in upp52 L
uvrAEUV-irradiated lytic phage resistance332
uvrBEUV-irradiated lytic phage resistance332
uvrCEUV-irradiated lytic phage resistance332
uvrDEUV-irradiated lytic phage resistance332
uxaBCEHexuronate resistance in eda742 L
uxuABEHexuronate resistance in eda742 L
uxuREMethylgalacturonide as C source574 C
valSEThymineless death resistance in thyA394 S
xapAEFluoro(5)uracil + adenosine resistance in upp deoD xapR(Con)111 L
xapREAdenosine as C source in upp deoD111 C
xapREInosine as C source in upp deoD111 C
xylEEXylose resistance in fda175 L

* Alterations:
S, structure;
FBI, site of feedback inhibition;
D, increased gene dosage;
C, constitutive gene expression;
Q, altered amount of gene product;
G, gain of function;
L, loss of function.

References

titlelinkpdf
1Abouhamad, W. N., M. Manson, M. M. Gibson, and C. F. Higgins. 1991. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease dpp and the dipeptide-binding protein. Mol. Microbiol. 5:1035–1048.google scholarpdf
1aAckerman, R. S., N. R. Cozzarelli, and W. Epstein. 1974. Accumulation of toxic concentrations of methylglyoxal by Escherichia coli K-12. J. Bacteriol. 119:357–362.google scholarpdf
2Adhya, S., P. Cleary, and A. Campbell. 1968. A deletion analysis of prophage lambda and adjacent genetic regions. Proc. Natl. Acad. Sci. USA 61:956–962.google scholarpdf
3Ahmad, S. I., and R. H. Pritchard. 1969. A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Mol. Gen. Genet. 104:351–359.google scholarpdf
4Ahmad, S. I., and R. H. Pritchard. 1972. Location of the gene specifying cytosine deaminase in Escherichia coli. Mol. Gen. Genet. 118:323–325.google scholarpdf
5Alaeddinoglu, N. C., and H. P. Charles. 1979. Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization. J. Gen. Microbiol. 110:47–59.google scholarpdf
6Alderman, E. M., S. S. Dills, T. Melton, and W. J. Dobrogosz. 1979. Cyclic AMP regulation of the bacteriophage T6 colicin K receptor in Escherichia coli. J. Bacteriol. 140:369–376.google scholarpdf
7Alexander, R. R., J. M. Calvo, and M. Freundllch. 1971. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J. Bacteriol. 106:213–220.google scholarpdf
8Alper, M. D., and B. N. Ames. 1975. Cyclic 3′,5′-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium. J. Bacteriol. 122:1081–1090.google scholarpdf
9Alper, M. D., and B. N. Ames. 1975. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J. Bacteriol. 121:259–266.google scholarpdf
10Alper, M. D., and B. N. Ames. 1978. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J. Bacteriol. 133:149–157.google scholarpdf
11Amaral, D., and H. L. Kornberg. 1975. Regulation of fructose uptake by glucose in Escherichia coli. J. Gen. Microbiol. 90:157–168.google scholarpdf
12Ames, G. F.-L. 1964. Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. Biophys. 104:1–18.google scholarpdf
13Ames, G. F.-L., D. P. Biek, and E. N. Spudich. 1978. Duplications of histidine transport genes in Salmonella typhimurium and their use for the selection of deletion mutants. J. Bacteriol. 136:1094– 1108.google scholarpdf
14Ames, G. F.-L., and J. Lever. 1970. Components of histidine transport: histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. USA 66:1096–1103.google scholarpdf
15Ames, G. F.-L., K. D. Noel, H. Tabor, E. N. Spudich, K. Nikaido, J. Afong, and F. Ardeshir. 1977. Fine-structure map of the histidine transport genes in Salmonella typhimurium. J. Bacteriol. 129:1289–1297.google scholarpdf
16Ammer, J., M. Brennenstuhl, P. Schindler, J.-V. Holtje, and H. Zahner. 1979. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. Antimicrob. Agents Chemother. 16:801–807.google scholarpdf
17Anderson, J. J., and D. L. Oxender. 1977. Escherichia coli transport mutants lacking binding protein and other components of the branched-chain amino acid transport systems. J. Bacteriol. 130:384–392.google scholarpdf
18Anderson, J. J., S. C. Quay, and D. L. Oxender. 1976. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J. Bacteriol. 126:80–90.google scholarpdf
19Anderson, J. J., J. M. Wilson, and D. L. Oxender. 1979. Defective transport and other phenotypes of a periplasmic “leaky” mutant of Escherichia coli K-12. J. Bacteriol. 140:351–358.google scholarpdf
20Anderson, R. P., and J. R. Roth. 1977. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31:473–505.google scholarpdf
21Anderson, R. P., and J. R. Roth. 1978. Tandem genetic duplications in Salmonella typhimurium: amplification of the histidine operon. J. Mol. Biol. 126:53–71.google scholarpdf
22Andrews, J. C., and S. A. Short. 1985. Genetic analysis of Escherichia coli oligopeptide transport mutants. J. Bacteriol. 161:484–492.google scholarpdf
23Anton, D. 1968. Histidine regulatory mutants in Salmonella typhimurium. V. Two new classes of histidine regulatory mutants. J. Mol. Biol. 33:533–546.google scholarpdf
24Anton, D. N. 1981. envB mutations confer UV sensitivity to Salmonella typhimurium and UV resistance to Escherichia coli. Mol. Gen. Genet. 181:150–152.google scholarpdf
25Aono, R., M. Yamasaki, and G. Tamura. 1979. High and selective resistance to mecillinam in adenylate cyclase-deficient or cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 137:839–845.google scholarpdf
26Apirion, D. 1967. Three genes that affect Escherichia coli ribosomes. J. Mol. Biol. 30:255–275.google scholarpdf
27Apirion, D., and D. Schlessinger. 1968. Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J. Bacteriol. 96:768–776.google scholarpdf
28Archibold, E. R., and L. S. Williams. 1973. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 114:1007–1013.google scholarpdf
29Argast, M., D. Ludtke, T. J. Silhavy, and W. Boos. 1978. A second transport system for sn- glycerol-3-phosphate in Escherichia coli. J. Bacteriol. 136:1070–1083.google scholarpdf
30Armstrong, G. D., and H. Yamazaki. 1977. Isolation and characterization of catabolite repression resistant mutants of Escherichia coli. Can. J. Microbiol. 23:1384–1393.google scholarpdf
31Artman, M., and S. Werthamer. 1979. Use of streptomycin and cyclic adenosine 5′- monophosphate in the isolation of mutants deficient in CAP protein. J. Bacteriol. 120:542–544.google scholarpdf
32Ashton, D. M., G. D. Sweet, J. M. Somers, and W. W. Kay. 1980. Citrate transport in Salmonella typhimurium: studies with 2-fluoro-L-erythro-citrate as a substrate. Can. J. Biochem. 58:797–803.google scholarpdf
33Astvatsaturyants, G. V., A. F. Lysenkov, Y. V. Smirnov, R. and R. S. Shakulov. 1988. Mutants of Escherichia coli with impaired feedback inhibition of histidine biosynthesis. Genetika 24:1928– 1934.google scholar
34Aswad, D., and D. E. Koshland, Jr. 1975. Isolation, characterization and complementation of Salmonella typhimurium chemotaxis mutants. J. Mol. Biol. 97:225–235.google scholarpdf
35Austin, E. A., J. F. Graves, L. A. Hite, C. T. Parker, and C. A. Schnaitman. 1990. Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12 insertion mutagenesis of the rfa locus. J. Bacteriol. 172:5312–5325.google scholarpdf
36Austin, S., and J. Scaife. 1970. A new method for selecting RNA polymerase mutants. J. Mol. Biol. 49:263–267.google scholarpdf
37Ayling, P. D. 1981. Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium. J. Bacteriol. 148:514–520.google scholarpdf
38Ayling, P. D., and E. S. Bridgeland. 1972. Methionine transport in wild-type and transport- defective mutants of Salmonella typhimurium. J. Gen. Microbiol. 73:127–141.google scholarpdf
39Bachi, B., and H. L. Kornberg. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J. Gen. Microbiol. 90:321–335.google scholarpdf
40Bachmann, B. J. 1983. Linkage map of Escherichia coli K-12, edition 7. Microbiol. Rev. 47:180–230.google scholarpdf
41Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 54:130–197.google scholarpdf
42Balbinder, E., R. Callahan III, P. P. McCann, J. C. Cordero, A. R. Weber, A. M. Smith, and F. Angelosanto. 1970. Regulatory mutants of the tryptophan operon of Salmonella typhimurium. Genetics 66:31–53.google scholarpdf
43Barak, Z., and C. Gilvarg. 1974. Triornithine-resistant strains of Escherichia coli. Isolation, definition, and genetic studies. J. Biol. Chem. 249:143–148.google scholarpdf
44Barak, Z., and C. Gilvarg. 1975. Specialized peptide transport system in Escherichia coli. J. Bacteriol. 122:1200–1207.google scholarpdf
45Barrett, E. L., and D. L. Riggs. 1982. Evidence for a second nitrate reductase activity that is distinct from the respiratory enzyme in Salmonella typhimurium. J. Bacteriol. 150:563–571.google scholarpdf
46Bassford, P. J., Jr., C. Bradbeer, R. J. Kadner, and C. A. Schnaitman. 1976. Transport of vitamin B12 in tonB mutants of Escherichia coli. J. Bacteriol. 128:242–247.google scholarpdf
47Bassford, P. J., Jr., R. J. Kadner, and C. A. Schnaitman. 1977. Biosynthesis of the outer membrane receptor for vitamin B12, E colicins, and bacteriophage BF23 by Escherichia coli: kinetics of phenotypic expression after the introduction of bfe+ and bfe alleles. J. Bacteriol. 129:265–275.google scholarpdf
48Baughman, G. A., and S. R. Fahnestock. 1979. Chloramphenicol resistance mutation in Escherichia coli which maps in the major ribosomal protein gene cluster. J. Bacteriol. 137:1315– 1323.google scholarpdf
49Baumberg, S. 1970. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol. Gen. Genet. 106:162–173.google scholarpdf
50Baumberg, S. 1976. Genetic control of arginine metabolism in prokaryotes. Second International Symposium on the Genetics of Industrial Microorganisms. Academic Press (Inc.), London.google scholarpdf
51Beacham, I. R., and S. Garrett. 1980. Isolation of Escherichia coli mutants (cpdB) deficient in periplasmic 2′:3′-cyclic phosphodiesterase and genetic mapping of the cpdB locus. J. Gen. Microbiol. 119:31–34.google scholarpdf
52Beacham, I. R., R. Kahana, L. Levy, and E. Yagil. 1973. Mutants of Escherichia coli K-12 “cryptic” or deficient in 5′-nucleotidase (uridine diphosphate-sugar hydrolase) and 3′-nucleotidase (cyclic phosphodiesterase) activity. J. Bacteriol. 116:957–964.google scholarpdf
53Beck, C. F., and J. L. Ingraham. 1971. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. Mol. Gen. Genet. 111:303–316.google scholarpdf
54Beck, C. F., J. L. Ingraham, and J. Neuhard. 1972. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. II. Uridine kinase, cytosine deaminase, and thymidine kinase. Mol. Gen. Genet. 115:208–215.google scholarpdf
55Begg, K. J., G. F. Hatfull, and W. D. Donachie. 1980. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell division gene ftsQ. J. Bacteriol. 144:435–437.google scholarpdf
56Belfort, M., and D. L. Wulff. 1973. Genetic and biochemical investigation of the Escherichia coli mutant hfl-1 which is lysogenized at high frequency by bacteriophage lambda. J. Bacteriol. 115:299– 306.google scholarpdf
57Beljanski, M., and M. Beljanski. 1957. Sur la formation d’enzymes respiratoires chez un mutant d’Escherichia coli streptomycino-résistant et auxotrophe pour l’hemine. Ann. Inst. Pasteur 92:396–412.google scholarpdf
58Beljanski, M., P. Bourgarel, and M. Beljanski. 1970. Showdomycine et biosynthèse d’ARN non complementaires de l’ADN. 1. Ann. Inst. Pasteur 118:253–276.google scholarpdf
59Bennett, R. L., and M. H. Malamy. 1970. Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 40:469–503.google scholarpdf
60Benson, C. E., S. H. Love, and C. N. Remy. 1970. Inhibition of de novo purine biosynthesis and interconversion by 6-methyl purine in Escherichia coli. J. Bacteriol. 101:872–880.google scholarpdf
61Berg, C. M. 1990. The branched chain amino acid transaminase genes and their products in Escherichia coli,. Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York.google scholarpdf
62Berg, C. M., and J. J. Rossi. 1974. Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 118:928–939.google scholarpdf
63Bergler, H., G. Hogenauer, and F. Thurnowsky. 1992. Sequences of the envM gene and of two mutated alleles in Escherichia coli. J. Gen. Microbiol. 138:2093–2100.google scholarpdf
64Berman-Kurtz, M., E. C. C. Lin, and D. P. Richey. 1971. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J. Bacteriol. 106:724–731.google scholarpdf
65Bernardi, A., and P. Leder. 1970. Protein biosynthesis in Escherichia coli: purification and characteristics of a mutant G factor. J. Biol. Chem. 245:4263–4268.google scholarpdf
66Bertino, J. B., and K. A. Stacey. 1966. A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem. J. 101:32c-33c.google scholarpdf
67Beverin, S., D. E. Sheppard, and S. S. Park. 1971. D-Fucose as a gratuitous inducer of the L- arabinose operon in strains of Escherichia coli B/r mutant in gene araC. J. Bacteriol. 107:79–86.google scholarpdf
68Bewick, M. A., and T. C. Y. Lo. 1980. Localization of the dicarboxylate binding protein in the cell envelope of Escherichia coli K12. Can. J. Biochem. 58:885–897.google scholarpdf
69Birch, R. G., J. M. Pemberton, and W. V. S. Basnayake. 1990. Stable albicidin resistance in Escherichia coli involves an altered outer-membrane nucleoside uptake system. J. Gen. Microbiol. 136:51–58.google scholarpdf
70Black, P. N. 1988. The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity in bacteriophage T2. J. Bacteriol. 170:2850–2854.google scholarpdf
71Blank, J., and P. Hoffee. 1972. Regulatory mutants of the deo regulon in Salmonella typhimurium. Mol. Gen. Genet. 116:291–298.google scholarpdf
72Bochner, B. R., H.-C. Huang, G. L. Schieven, and B. N. Ames. 1980. Positive selection for loss of tetracycline resistance. J. Bacteriol. 143:926–933.google scholarpdf
73Böck, A., F. Turnowsky, and G. Hoegenauer. 1982. Tiamulin resistance mutations in Escherichia coli. J. Bacteriol. 151:1253–1256.google scholarpdf
74Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.google scholarpdf
75Bogosian, G., P. V. Haydock, and R. L. Somerville. 1983. Indolmycin-mediated inhibition and stimulation of transcription at the trp promoter of Escherichia coli. J. Bacteriol. 153:1120–1123.google scholarpdf
76Bollen, A., T. Cabezon, M. De Wilde, R. Villarroel, and A. Herzog. 1975. Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J. Mol. Biol. 99:795–806.google scholarpdf
77Boos, W., C. Bantlow, D. Benner, and E. Roller. 1983. cir, a gene conferring resistance to colicin 1, maps between mgl and fpk on the Escherichia coli chromosome. Mol. Gen. Genet. 191:401–406.google scholarpdf
78Borg-Oliver, S. A., D. Tarlington, and K. D. Brown. 1987. Defective regulation of the phenylalanine biosynthetic operon in mutants of the phenylalanyl transfer RNA synthetase operon. J. Bacteriol. 169:1949–1953.google scholarpdf
79Boronat, A., E. Caballero, and J. Aguilar. 1983. Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli. J. Bacteriol. 153:134–139.google scholarpdf
80Bourd, G. I., R. S. Erlagaeva, T. N. Bolshakova, and V. N. Gershanovitch. 1975. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-α-D-glucose transport. Eur. J. Biochem. 53:419–427.google scholarpdf
81Bourret, R. B., and M. S. Fox. 1988. Lysogenization of Escherichia coli him+, himA, and himD hosts by bacteriophage Mu. J. Bacteriol. 170:1672–1682.google scholarpdf
82Boy, E., and U. C. Patte. 1972. Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J. Bacteriol. 112:84–92.google scholarpdf
83Brana, H., J. Hubacek, D. Michaljanicova, I. Holubova, and K. Cejka. 1977. Membrane mutation affecting energy-linked functions in Escherichia coli K12. Folia Microbiol. 22:198–205.google scholarpdf
84Branes, L. V., J. M. Somers, and W. W. Kay. 1981. Hydrophobic peptide auxotrophy in Salmonella typhimurium. J. Bacteriol. 147:986–996.google scholarpdf
84aBraun, V. 1989. The structurally related exbB and tolQ genes are interchangeable in conferring tonB-dependent colicin, bacteriophage, and albomycin sensitivity. J. Bacteriol. 171: 6387–6390.google scholarpdf
85Braun, V., J. Frenz, K. Hantke, and K. Schaller. 1980. Penetration of colicin M into cells of Escherichia coli. J. Bacteriol. 142:162–168.google scholarpdf
86Braun, V., K. Guenthner, K. Hantke, and L. Zimmermann. 1983. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 156:308–315.google scholarpdf
87Braun, V., K. Hantke, and W. Stauder. 1977. Identification of the sid outer membrane receptor protein in Salmonella typhimurium SL1024. Mol. Gen. Genet. 155:227–229.google scholarpdf
88Braun-Breton, C., and M. Hofnung. 1981. In vivo and in vitro functional alterations of the bacteriophage lambda receptor in lamB missense mutants of Escherichia coli K-12. J. Bacteriol. 148:845–852.google scholarpdf
89Breckenridge, L., and L. Gorini. 1970. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65:9–25.google scholarpdf
90Breeze, A. S., and E. E. Obaseiki-Ebor. 1983. Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia coli K12. J. Gen. Microbiol. 129:99–103.google scholarpdf
91Brenchley, J. E., C. A. Baker, and L. G. Patil. 1975. Regulation of ammonia assimilatory enzymes in Salmonella typhimurium. J. Bacteriol. 124:182–189.google scholarpdf
92Brickman, E., L. Soll, and J. Beckwith. 1973. Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. J. Bacteriol. 116:582–587.google scholarpdf
93Brochu, A., N. Brochu, T. I. Nicas, T. R. Parr, Jr., A. A. Minnick, Jr., E. K. Dolence, J. A. McKee, M. J. Miller, M. C. Lavoie, and F. Malouin. 1992. Modes of action and inhibitory activities of new siderophore-beta lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob. Agents Chemother. 36:2166–2175.google scholarpdf
94Brown, K. D. 1970. Formation of aromatic amino acid pools in Escherichia coli K-12. J. Bacteriol. 104:177–188.google scholarpdf
95Brown, K. D., and R. L. Somerville. 1971. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12. J. Bacteriol. 108:386–399.google scholarpdf
96Brown, T. D. K., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102:327– 336.google scholarpdf
97Bruce, I., J. Hardy, and K. A. Stacey. 1984. Potentiation by purines of the growth-inhibitory effects of sulphonamides on Escherichia coli and the location of the gene which mediates this effect. J. Gen. Microbiol. 130:2489–2495.google scholarpdf
98Bruni, C. B., V. Colantuoni, L. Sbordone, R. Cortese, and F. Blasi. 1977. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. J. Bacteriol. 130:4–10.google scholarpdf
99Brunner, D. P., G. S. Graham, and R. W. Treick. 1982. Exchange of colicin receptor capacity between strains of Escherichia coli sensitive or resistant to colicin K-K235. Arch. Microbiol. 131:229–234.google scholarpdf
100Buchstein, S. R., and D. C. Hinkle. 1982. Genetic analysis of two bacterial RNA polymerase mutants that inhibit the growth of bacteriophage T7. Mol. Gen. Genet. 188:211–218.google scholarpdf
101Buckel, P., A. Buchberger, A. Boeck, and H. G. Wittmann. 1977. Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol. Gen. Genet. 158:47–54.google scholarpdf
102Buhr, A., G. A. Daniels, and B. Erin. 1992. The glucose transporter of Escherichia coli mutants with impaired translocation activity that retain phosphorylation activity. J. Biol. Chem. 267:3847– 3851.google scholarpdf
103Bullas, L. R., and C. Colson. 1975. DNA restriction and modification systems in Salmonella. III. SP, a Salmonella potsdam system allelic to the SB system in Salmonella typhimurium. Mol. Gen. Genet. 139:177–188.google scholarpdf
104Burd, G. I., G. I. Erlagaeva, T. N. Bol’shakova, and V. N. Gershanovich. 1974. Separation of the α-methylglucoside transport and phosphorylation system in a mutant of Escherichia coli K12 resistant to catabolic repression by glucose. Dokl. Akad. Nauk SSSR 215:1243–1246.google scholar
105Burman, L. G., and K. Nordstrom. 1971. Colicin tolerance induced by ampicillin resistance in a strain of Escherichia coli K-12. J. Bacteriol. 106:1–13.google scholarpdf
106Burns, R. O., J. G. Hofler, and G. H. Luginbuhl. 1979. Threonine deaminase from Salmonella typhimurium. Substrate-specific patterns of inhibition in an activation site-deficient form of the enzyme. J. Biol. Chem. 254:1074–1079.google scholarpdf
107Burton, K. 1977. Transport of adenine, hypoxanthine and uracil into Escherichia coli. Biochem. J. 168:195–204.google scholarpdf
108Buttin, G. 1963. Mécanismes regulateurs dans la biosynthèse des enzymes du metabolisme du galactose chez Escherichia coli K12. J. Mol. Biol. 7:183–205.google scholarpdf
109Buxton, R. S. 1971. Genetic analysis of Escherichia coli K-12 mutants resistant to bacteriophage BF23 and the E-group colicins. Mol. Gen. Genet. 113:154–156.google scholarpdf
110Buxton, R. S., K. Hammer-Jespersen, and T. D. Hansen. 1978. Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming λ deo+ transducing bacteriophages. J. Bacteriol. 136:668–681.google scholarpdf
111Buxton, R. S., K. Hammer-Jespersen, and P. Valentin-Hansen. 1980. A second purine nucleoside phosphorylase in Escherichia coli K-12. I. Xanthosine phosphorylase regulatory mutants isolated as secondary-site revertants of a deoD mutant. Mol. Gen. Genet. 179:331–340.google scholarpdf
112Calcott, P. H., and K. N. Calcott. 1984. Involvement of outer membrane proteins in freeze thaw resistance of Escherichia coli. Can. J. Microbiol. 30:339–344.google scholarpdf
113Calendar, R., B. Lindquist, G. Sironi, and A. J. Clark. 1970. Characterization of REP– mutants and their interaction with P2 phage. Virology 40:72–83.google scholarpdf
114Caligiuri, M. G., and R. Bauerle. 1991. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium: evidence for an amino-terminal regulatory site. J. Biol. Chem. 266:8328–8335.google scholarpdf
115Calvo, J. M., M. Freundlich, and H. E. Umbarger. 1969. Regulation of branched-chain amino acid biosynthesis in Salmonella typhimurium: isolation of regulatory mutants. J. Bacteriol. 97:1272– 1282.google scholarpdf
116Calvo, J. M., P. Margolin, and H. E. Umbarger. 1969. Operator constitutive mutations in the leucine operon of Salmonella typhimurium. Genetics 61:777–787.google scholarpdf
117Calvo, R. A., and J. M. Calvo. 1967. Lack of end-product inhibition and repression of leucine synthesis in a strain of Salmonella typhimurium. Science 156:1107–1109.google scholarpdf
118Campbell, J. H., J. Lengyel, and J. Langridge. 1973. Evolution of a second gene for β- galactosidase in Escherichia coli. Proc. Natl. Acad. Sci. USA 70:1841–1845.google scholarpdf
119Cannon, M., T. Cabezon, and A. Bollen. 1979. Mapping of neamine resistance: identification of two genetic loci, neaA and neaB. Mol. Gen. Genet. 130:321–326.google scholarpdf
120Cardelli, J., and J. Konisky. 1974. Isolation and characterization of an Escherichia coli mutant tolerant to colicins Ia and Ib. J. Bacteriol. 119:379–385.google scholarpdf
121Casse, F. 1970. Mapping of the gene chlB controlling membrane bound nitrate reductase and formic hydrogen-lyase activities in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 39:429– 436.google scholarpdf
122Casse, F., M. C. Pascal, M. Chippaux, and J. Ratouchniak. 1972. Mapping of the chlB gene in Salmonella typhimurium LT2. Mol. Gen. Genet. 119:67–70.google scholarpdf
123Caster, J. H. 1967. Selection of thymine-requiring strains from Escherichia coli on solid medium. J. Bacteriol. 94:1804.google scholarpdf
124Chai, T., and J. Foulds. 1974. Missing outer membrane protein in tolG mutants of Escherichia coli. J. Mol. Biol. 85:465–474.google scholarpdf
125Chai, T.-J., V. Wu, and J. Foulds. 1982. Colicin A receptor role of two Escherichia coli outer membrane proteins (OmpF protein and btuB gene product) and lipopolysaccharide. J. Bacteriol. 151:983–988.google scholarpdf
126Chang, G. W., D. Straus, and B. N. Ames. 1971. Enriched selection of dominant mutations: histidine operator mutations. J. Bacteriol. 107:578–579.google scholarpdf
127Chater, K. F., and R. J. Rowbury. 1970. A genetical study of the feedback-sensitive enzyme of methionine synthesis in Salmonella typhimurium. J. Gen. Microbiol. 63:111–120.google scholarpdf
128Chattopadhyay, M. K., A. K. Ghosh, and S. Sengupta. 1991. Control of methionine biosynthesis in Escherichia coli K12: a closer study with analog resistant mutants. J. Gen. Microbiol. 137:685–691.google scholarpdf
129Chen, M. X., N. Bouquin, V. Norris, S. Casaregola, S. J. Seror, J. Simone, and I. B. Holland. 1991. A single base change in the acceptor stem of tRNA Leu 3 confers resistance upon Escherichia coli to the calmodulin inhibitor 48/80. EMBO J. 10:3113–3122.google scholarpdf
130Chippaux, M., D. Giudici, A. Abou-Jaoude, and M. C. Pascal. 1978. A mutation leading to the total lack of nitrate reductase activity in Escherichia coli K12. Mol. Gen. Genet. 160:225–229.google scholarpdf
131Christman, M. F., R. W. Morgan, F. S. Jacobson, and B. N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762.google scholarpdf
132Clark, D., and J. E. Cronan, Jr. 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J. Bacteriol. 141:177–183.google scholarpdf
133Clark, D. P., and J. P. Beard. 1979. Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. J. Gen. Microbiol. 113:267–279.google scholarpdf
134Clement, J. M., C. Braun-Breton, E. Lepouce, C. Marchal, D. Perrin, H. Villarroya, and M. Hofnung. 1982. A system for genetic analysis in gene lamB: first results with lambda resistant tight mutants. Ann. Microbiol. 133A:9–20.google scholarpdf
135Clement, J.-M., E. Lepouce, C. Marchal, and M. Hofnung. 1983. Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda. EMBO J. 2:77–80.google scholarpdf
136Clifton, G., S. R. Bryant, and C. G. Skinner. 1970. N1-(substituted) pantothenamides, antimetabolites of pantothenic acid. Arch. Biochem. Biophys. 137:523–528.google scholarpdf
137Cohen, G., and F. Jacob. 1959. Sur la répression de la synthese des enzymes intervenant dans la formation du tryptophane chez Escherichia coli. C.R. Acad. Sci. Ser. D 248:3490–3492.google scholarpdf
138Cohen, G. N., J.-C. Patte, P. Truffa-Bachi, C. Sawas, and M. Doudoroff. 1965. Repression and end-product inhibition in a branched biosynthetic pathway. Mécanismes de Regulation des Activitiés Cellulaires chez les Micro-organismes. Centre National de la Recherche Scientifique, Paris.google scholarpdf
139Cole, S. T., and J. R Guest. 1979. Production of a soluble form of fumarate reductase by multiple gene duplications in Escherichia coli K12. Eur. J. Biochem. 102:65–71.google scholarpdf
140Coleman, J., S. Inouye, and M. Inouye. 1983. Isolation of mutants of the major outer membrane lipoprotein of Escherichia coli for the study of its assembly. Methods Enzymol. 97:124–129.google scholarpdf
141Coleman, W. G., and L. Leive. 1979. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J. Bacteriol. 139:899–910.google scholarpdf
142Cookson, B. T., B. M. Olivera, and J. R. Roth. 1987. Genetic characterization and regulation of the nadB locus of Salmonella typhimurium. J. Bacteriol. 169:4285–4293.google scholarpdf
143Cooley, W., K. Sirotkin, R. Green, and L. Snyder. 1979. A new gene of Escherichia coli K-12 whose product participates in T4 bacteriophage late gene expression: interaction of lit with the T4- induced polynucleotide 5′-kinase 3′-phosphatase. J. Bacteriol. 140:83–91.google scholarpdf
144Cooper, R. A. 1978. The utilization of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Arch. Microbiol. 118:199–206.google scholarpdf
145Corchuelo, M. C., A. Herzog, L. Desmarez, R. Lavalle, and A. Bollen. 1981. Resistance to the peptide-like antibiotic negamycin in Escherichia coli. Biochem. Biophys. Res. Commun. 100:1497– 1503.google scholarpdf
146Cordaro, J. C., T. Melton, J. P. Stratis, M. Atagun, C. Gladding, P. E. Hartman, and S. Roseman. 1976. Fosfomycin resistance: selection method for internal and extended deletions of the phosphoenolpyruvate:sugar phosphotransferase genes of Salmonella typhimurium. J. Bacteriol. 128:785–793.google scholarpdf
147Cordaro, J. C., and S. Roseman. 1972. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. J. Bacteriol. 112:17–29.google scholarpdf
148Cortese, R., R. Landsberg, R. A. VanderHaar, H. E. Umbarger, and B. N. Ames. 1974. Pleiotrophy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine- valine operons. Proc. Natl. Acad. Sci. USA 71:1857–1861.google scholarpdf
149Corwin, L. M., G. R. Fanning, F. Feldman, and P. Margolin. 1966. Mutation leading to increased sensitivity to chromium ion in Salmonella typhimurium. J. Bacteriol. 91:1509–1515.google scholarpdf
150Cosloy, S. D. 1973. D-Serine transport system in Escherichia coli K-12. J. Bacteriol. 114:679–684.google scholarpdf
151Coulton, J. W., P. Mason, D. R. Cameron, G. Carmel, R. Jean, and H. N. Rode. 1986. Protein fusions of β-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J. Bacteriol. 165:181–192.google scholarpdf
152Cox, E. C., and T. C. Gibson. 1974. Selection for high mutation rates in chemostats. Genetics 77:169–184.google scholarpdf
153Crabeel, M., D. Charlier, R. Cunin, A. Bogen, N. Glansdorf, and A. Pierard. 1975. Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. J. Bacteriol. 123:898–904.google scholarpdf
154Creaghan, I. T., and J. R. Guest. 1977. Suppression of the succinate requirement of lipoamide dehydrogenase mutants of Escherichia coli by mutations affecting succinate dehydrogenase activity. J. Gen. Microbiol. 102:183–194.google scholarpdf
155Csonka, L. N. 1981. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182:82–86.google scholarpdf
156Csonka, L. N. 1982. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J. Bacteriol. 151:1433–1443.google scholarpdf
157Cunningham, P. R., and D. P. Clark. 1986. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol. Gen. Genet. 205:487–493.google scholarpdf
158Curtis, S. J., and W. Epstein. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J. Bacteriol. 122:1189–1199.google scholarpdf
159Dabbs, E. R. 1978. Kasugamycin-dependent mutants of Escherichia coli. J. Bacteriol. 136:994– 1001.google scholarpdf
160Dabbs, E. R. 1982. Three additional loci of rifampicin dependence in Escherichia coli. Mol. Gen. Genet. 187:519–522.google scholarpdf
161Dabbs, E. R. 1983. Escherichia coli kasugamycin dependence arising from mutation at the rpsI locus. J. Bacteriol. 153:709–715.google scholarpdf
162Dabbs, E. R., and K. Looman. 1981. An antibiotic dependent conditional lethal mutant with a lesion affecting transcription and translation. Mol. Gen. Genet. 184:224–229.google scholarpdf
163Dabbs, E. R., B. Poldermans, H. Bakker, and P. H. Van Knippenberg. 1980. Biochemical characterization of ribosomes of kasugamycin-dependent mutants of Escherichia coli. FEBS Lett. 117:164–166.google scholarpdf
164Dame, J. B., and B. M. Shapiro. 1976. Use of polymyxin B, levallorphan, and tetracaine to isolate novel mutants of Escherichia coli. J. Bacteriol. 127:961–972.google scholarpdf
165Danchin, A. 1977. A new technique for selection of sensitive and auxotrophic mutants of E. coli: isolation of a strain sensitive to an excess of one-carbon metabolites. Mol. Gen. Genet. 150:293–299.google scholarpdf
166Danchin, A., and L. Dondon. 1980. Serine sensitivity of Escherichia coli K-12: partial characterization of a serine resistant mutant that is extremely sensitive to 2-ketobutyrate. Mol. Gen. Genet. 178:155–164.google scholarpdf
167Daniel, J., and A. Danchin. 1979. Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K12 toward serine. Mol. Gen. Genet. 176:343–350.google scholarpdf
168D’Ari, R., A. Jaffé, P. Bouloc, and A. Robin. 1988. Cyclic AMP and cell division in Escherichia coli. J. Bacteriol. 170:65–70.google scholarpdf
169Das, A., D. Court, and S. Adhya. 1976. Isolation and characteristics of conditional-lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. USA 73:1959–1963.google scholarpdf
170Das, A., B. Ghosh, S. Barik, and K. Wolska. 1985. Evidence that ribosomal protein S-10 itself is a cellular component necessary for transcription antitermination by phage lambda N protein. Proc. Natl. Acad. Sci. USA 82:4070–4074.google scholarpdf
171Datta, D. B., B. Arden, and U. Henning. 1977. Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. J. Bacteriol. 131:821–829.google scholarpdf
172Davies, J., P. Anderson, and B. D. Davis. 1965. Inhibition of protein synthesis by spectinomycin. Science 149:1096–1098.google scholarpdf
173Davies, J. K., and P. Reeves. 1975. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J. Bacteriol. 123:102–117.google scholarpdf
174Davis, E. J., J. M. Blatt, E. K. Henderson, J. J. Whittaker, and J. H. Jackson. 1977. Valine- sensitive acetohydroxy acid synthetases in Escherichia coli K-12: unique regulation modulated by multiple genetic sites. Mol. Gen. Genet. 156:239–249.google scholarpdf
175Davis, E. O., M. J. Jones-Mortimer, and P. J. F. Henderson. 1984. Location of a structural gene for xylose proton symport at 91 minutes on the linkage map of Escherichia coli K12. J. Biol. Chem. 259:1520–1525.google scholarpdf
176Daws, T. D., and J. A. Fuchs. 1984. Isolation and characterization of an Escherichia coli mutant deficient in dTMP kinase activity. J. Bacteriol. 157:440–444.google scholarpdf
177Dean, D. A., J. Reizer, H. Nikaido, and M. H. Saier, Jr. 1990. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate- sugar phosphotransferase system. Characterization of inducer exclusion resistant mutants and reconstitution of inducer exlusion in proteoliposomes. J. Biol. Chem. 265:21005–21010.google scholarpdf
178DeFelice, M., J. Guardiola, A. Lamberti, and M. Iaccarino. 1973. Escherichia coli K-12 mutants altered in the transport systems for oligo- and dipeptides. J. Bacteriol. 116:751–756.google scholarpdf
179Defez, R., and M. DeFelice. 1981. Cryptic operon for β-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97:11–25.google scholarpdf
180Del Campillo-Campbell, A., and A. Campbell. 1982. Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli. J. Bacteriol. 149:469–478.google scholarpdf
181Del Castillo, I., J. L. Vizan, M. Del Carmen Rodriguez-Sainz, and F. Moreno. 1991. An unusual mechanism for resistance to the antibiotic coumermycin A-1. Proc. Natl. Acad. Sci. USA 88:8860–8864.google scholarpdf
182Delcuve, G., T. Cabezon, A. Herzog, M. Cannon, and A. Bollen. 1978. Resistance to the aminoglycoside antibiotic neamine in Escherichia coli. A new mutant whose NeaR phenotype results from the cumulative effects of two distinct mutations. Biochem. J. 174:1–7.google scholarpdf
183DelGiudice, L. 1979. Method for isolating restriction- and modification-less mutants of Escherichia coli K-12. J. Bacteriol. 137:673–676.google scholarpdf
184Delidakis, C. E., M. C. Jones-Mortimer, and H. L. Kornberg. 1982. A mutant inducible for galactitol utilization in Escherichia coli K12. J. Gen. Microbiol. 128:601–604.google scholarpdf
185Delvaux, A. M., and R. Devoret. 1969. Occurrence of suppressors in caffeine-resistant mutants from Escherichia coli K12. Mutat. Res. 7:273–285.google scholarpdf
186Dempsey, W. B., and L. J. Arcement. 1971. Identification of the forms of vitamin B6 present in the culture media of “vitamin B6 control” mutants. J. Bacteriol. 107:580-582.google scholarpdf
187Dendinger, S., and W. J. Brill. 1972. Effect of the proline analogue baikiain on proline metabolism in Salmonella typhimurium. J. Bacteriol. 112:1134–1141.google scholarpdf
188Dendinger, S. M., L. G. Patil, and J. E. Brenchley. 1980. Salmonella typhimurium mutants with altered glutamate dehydrogenase and glutamate synthase activities. J. Bacteriol. 141:190–198.google scholarpdf
189Desrochers, M., L. Peloquin, and A. Sasarman. 1978. Mapping of the hemE locus in Salmonella typhimurium. J. Bacteriol. 135:1151–1153.google scholarpdf
190Devoret, R., and M. Blanco. 1970. Mutants of Escherichia coli K12 λ+ noninducible by thymine deprivation. I. Method of isolation and classes of mutants obtained. Mol. Gen. Genet. 107:272–280.google scholarpdf
191Dietz, G. W., Jr. 1978. Growth of Escherichia coli on glucosamine 6-phosphate selection of a constitutive hexose phosphate transport system mutant. Can. J. Microbiol. 24:203–208.google scholarpdf
192Dietz, G. W., and L. A. Heppel. 1971. Studies on the uptake of hexose phosphates. III. Mechanism of uptake of glucose 1-phosphate in Escherichia coli. J. Biol. Chem. 246:2891–2897.google scholarpdf
193Dila, D. K., and S. R. Maloy. 1986. Proline transport in Salmonella typhimurium putP permease mutants with altered substrate specificity. J. Bacteriol. 168:590–594.google scholarpdf
194DiNardo, S., K. A. Voelkel, R. Sternglanz, A. E. Reynolds, and A. Wright. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43– 51.google scholarpdf
195Dombou, M., T. Mizuno, and S. Mizushima. 1977. Interaction of the cytoplasmic membrane and ribosomes in Escherichia coli altered ribosomal proteins in sucrose-dependent spectinomycin- resistant mutants. Mol. Gen. Genet. 155:53–60.google scholarpdf
196Doskocil, J., and F. Sorm. 1970. The mode of action of 5-aza-2′-deoxycytidine in Escherichia coli. Eur. J. Biochem. 13:180–187.google scholarpdf
197Dover, S., and Y. S. Halpern. 1974. Genetic analysis of the γ-aminobutyrate utilization pathway in Escherichia coli K-12. J. Bacteriol. 117:494–501.google scholarpdf
198Downs, D., L. Waxman, A. L. Goldberg, and J. Roth. 1986. Isolation and characterization of lon mutants in Salmonella typhimurium. J. Bacteriol. 165:193–197.google scholarpdf
199Drexler, K., I. Riede, D. Montag, M.-L. Eschbach, and U. Henning. 1989. Receptor specificity of the Escherichia coli T-even type phage Ox2: mutational alterations in host range mutants. J. Mol. Biol. 207:797–804.google scholarpdf
200Droffner, M. L., and N. Yamamoto. 1992. Role of nalidixic acid in isolation of Salmonella typhimurium strains capable of growth at 48°C. Curr. Microbiol. 25:257–260.google scholarpdf
201Drury, L. S., and R. S. Buxton. 1988. Identification and sequencing of the Escherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2. Mol. Microbiol. 2:109–119.google scholarpdf
202Dubnau, E., and P. Margolin. 1972. Suppression of promoter mutations by the pleiotrophic supX mutations. Mol. Gen. Genet. 117:91–112.google scholarpdf
203Duncan, B. K., P. A. Rockstroh, and H. R. Warner. 1978. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J. Bacteriol. 134:1039–1045.google scholarpdf
204Echols, H., A. Garen, S. Garen, and A. Torriani. 1961. Genetic control of repression of alkaline phosphatase in E. coli. J. Mol. Biol. 3:425–438.google scholarpdf
205Eick-Helmerich, K., and V. Braun. 1989. Import of biopolymers into Escherichia coli nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J. Bacteriol. 171:5117–5126.google scholarpdf
206Eisenberg, M. A., B. Mee, O. Prakash, and M. R. Eisenberg. 1975. Properties of α- dehydrobiotin-resistant mutant of Escherichia coli K-12. J. Bacteriol. 122:66–72.google scholarpdf
207Elwell, L. P., R. Ferone, G. A. Freeman, J. A. Fyfe, J. A. Hill, P. H. Ray, C. A. Richards, S. C. Singer, V. B. Knick, J. L. Rideout, and T. P. Zimmerman. 1987. Antibacterial activity and mechanism of action of 3′ azido-3′-deoxythymidine BWA-509U. Antimicrob. Agents Chemother. 31:274–280.google scholarpdf
208Ely, B., D. B. Fankhauser, and P. E. Hartman. 1974. A fine structure map of the Salmonella histidine operator-promoter. Genetics 78:607–631.google scholarpdf
209Englesberg, E., J. Irr, J. Power, and N. Lee. 1965. Positive control of enzyme synthesis by gene C in the L-arabinose system. J. Bacteriol. 90:946–957.google scholarpdf
210Eriksson-Grennberg, K. G., H. G. Boman, J. A. T. Jansson, and S. Thoren. 1965. Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54–62.google scholarpdf
211Eriksson-Grennberg, K. G., and K. Nordstrom. 1973. Genetics and physiology of a tolE mutant of Escherichia coli K-12 and phenotypic suppression of its phenotype by galactose. J. Bacteriol. 115:1219–1222.google scholarpdf
212Eriksson-Grennberg, K. G., K. Nordstrom, and P. Englund. 1971. Resistance of Escherichia coli to penicillins. IX. Genetics and physiology of class II ampicillin-resistant mutants that are galactose negative or sensitive to bacteriophage C21, or both. J. Bacteriol. 108:1210–1223.google scholarpdf
213Essenberg, R. C. 1984. Use of homocysteic acid for selecting mutants at the gltS locus of Escherichia coli K12. J. Gen. Microbiol. 130:1311–1314.google scholarpdf
214Essenberg, R. C., and H. L. Kornberg. 1977. Location of the gene for hexose phosphate transport (uhp) on the chromosome of Escherichia coli. J. Gen. Microbiol. 99:157–169.google scholarpdf
215Ezekiel, D. H. 1965. False feedback inhibition of aromatic amino acid biosynthesis by β-2-thienyl- alanine. Biochim. Biophys. Acta 95:54–62.google scholarpdf
216Ezekiel, D., and J. E. Hutchins. 1968. Mutations affecting RNA polymerase associated with rifampicin resistance in Escherichia coli. Nature 220:276–277.google scholarpdf
217Faik, P., and H. L. Kornberg. 1973. Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Lett. 32:260–263.google scholarpdf
218Fangman, W. L., and F. C. Neidhardt. 1964. Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli. J. Biol. Chem. 239:1839–1843.google scholarpdf
219Farley, M. M., W. M. Shafer, and J. K. Spitznagel. 1988. Lipopolysaccharide structure determines ionic and hydrophobic binding of a cationic antimicrobial neutrophil granule protein. Infect. Immun. 56:1589–1592.google scholarpdf
220Fasano, O., and A. Parmeggiani. 1981. Altered regulation of the GTPase activity in a kirromycin resistant elongation factor Tu. Biochemistry 20:1361–1366.google scholarpdf
221Favre, R., A. Wiater, S. Puppo, and M. Iaccarino. 1976. Expression of a valine resistant acetolactate synthase activity mediated by the ilvO and ilvG genes of Escherichia coli K12. Mol. Gen. Genet. 143:243–252.google scholarpdf
222Fayerman, J. T., M. C. Vann, L S. Williams, and H. E. Umbarger. 1979. ilvU, a locus in Escherichia coli affecting the derepression of isoleucyl-tRNA synthetase and the RPC-5 chromatographic profiles of tRNAile and tRNAval. J. Biol. Chem. 254:9429–9440.google scholarpdf
223Ferenci, T. 1980. Methyl-α-maltoside and 5-thiomaltose: analogs transported by the Escherichia coli maltose transport system. J. Bacteriol. 144:7–11.google scholarpdf
224Ferenci, T., H. L. Kornberg, and J. Smith. 1971. Isolation and properties of a regulatory mutant in the hexose phosphate transport system of Escherichia coli. FEBS Lett. 13:133–136.google scholarpdf
225Fillingame, R. H. 1975. Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5′-triphosphate transducing system of Escherichia coli. J. Bacteriol. 124:870–883.google scholarpdf
226Fillingame, R. H., M. Oldenburg, and D. Fraga. 1991. Mutation of alanine-24 to serine in subunit C of the Escherichia coli F-1 F-O ATP synthase reduces reactivity of aspartyl 61 with dicyclohexylcarbodiimide. J. Biol. Chem. 266:20934–20939.google scholarpdf
227Filutowicz, M., Z. Ciesla, and T. Klopotowski. 1979. Interference of azide with cysteine biosynthesis in Salmonella typhimurium. J. Gen. Microbiol. 113:45–55.google scholarpdf
228Fimmel, A., and B. Haddock. 1979. Use of chlC-lac fusions to determine regulation of gene chlC in Escherichia coli K-12. J. Bacteriol. 138:726–730.google scholarpdf
229Fimmel, A. L., D. A. Jans, L. Hatch, L. B. James, F. Gibson, and G. B. Cox. 1985. The F-1 F-0 ATPase of Escherichia coli : the substitution of alanine by threonine at position 25 in the C-subunit affects function but not assembly. Biochim. Biophys. Acta 808:252–258.google scholarpdf
230Fimmel, A. L., and R. E. Loughlin. 1977. Isolation and characterization of cysK mutants of Escherichia coli. J. Gen. Microbiol. 103:37–43.google scholarpdf
231Fisher, K. E., and E. Eisenstein. 1993. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli. J. Bacteriol. 175:6605–6613.google scholarpdf
232Fortin, T., P. Phoenix, and G. R. Drapeau. 1990. Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. J. Bacteriol. 172:6607–6610.google scholarpdf
233Foster, J. W., and H. K. Hall. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172:771–778.google scholarpdf
234Foster, J. W., D. M. Kinney, and A. G. Moat. 1979. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J. Bacteriol. 137:1165–1175.google scholarpdf
235Foulds, J. 1976. tolF locus in Escherichia coli: chromosomal location and relationship to loci cmlB and tolD. J. Bacteriol. 128:604–608.google scholarpdf
236Foulds, J., and C. Barrett. 1973. Characterization of Escherichia coli mutants tolerant to bacteriocin JF246: two new classes of tolerant mutants. J. Bacteriol. 116:885–892.google scholarpdf
237Foulds, J., and T.-J. Chai. 1978. New major outer membrane protein found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J. Bacteriol. 133:1478–1483.google scholarpdf
238Fouts, K. E., and S. D. Barbour. 1981. Transductional mapping of ksgB and a new Tn5-induced kasugamycin resistance gene, ksgD, in Escherichia coli K-12. J. Bacteriol. 145:914–919.google scholarpdf
239Fradkin, J. E., and D. G. Fraenkel. 1971. 2-Keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli. J. Bacteriol. 108:1277–1283.google scholarpdf
240Fraenkel, D. G., and S. Banerjee. 1972. Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli. Genetics 71:481–489.google scholarpdf
241Franco, P. J., J. A. Eelkema, and R. J. Brooker. 1989. Isolation and characterization of thiodigalactoside resistant mutants of the lactose permease which possess an enhanced recognition for maltose. J. Biol. Chem. 264:15988–15992.google scholarpdf
242Franklin, N. C. 1969. Mutation in galU gene of E. coli blocks phage Pl infection. Virology 38:189–191.google scholarpdf
243Friedberg, I. 1972. Localization of phosphoglucose isomerase in Escherichia coli and its relation to the induction of the hexose phosphate transport system. J. Bacteriol. 112:1201–1205.google scholarpdf
244Friedman, D. I. 1971. A bacterial mutant affecting lambda development. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholar
245Friedman, D. I., and M. Baumann. 1976. Cooperative effects of bacterial mutations affecting λ N gene expression. 1. Isolation and characterization of a nusB mutant. Virology 73:119–127.google scholarpdf
246Friedman, D. I., and M. Gottesman. 1983. Lytic mode of λ development. Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholar
247Friedman, S. 1982. Bactericidal effect of 5-azacytidine on Escherichia coli carrying EcoRII restriction-modification enzymes. J. Bacteriol. 151:262–268.google scholarpdf
248Froehler, J., A. Rechenmacher, J. Thomale, G. Nass, and A. Boeck. 1980. Genetic analysis of mutations causing borrelidin resistance by overproduction of threonyl-transfer ribonucleic acid synthetase. J. Bacteriol. 143:1135–1141.google scholarpdf
249Fujita, H., S. Yamaguchi, T. Taira, and T. Iino. 1981. A simple method for the isolation of flagellar shape mutants in Salmonella. J. Gen. Microbiol. 125:213–216.google scholarpdf
250Furukawa, H., J.-T. Tsay, S. Jackowski, Y. Takamura, and C. O. Rock. 1993. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J. Bacteriol. 175:3723–3729.google scholarpdf
251Garber, B. B., and J. S. Gots. 1980. Utilization of 2,6-diaminopurine by Salmonella typhimurium. J. Bacteriol. 143:864–871.google scholarpdf
252Gayda, R. C., L. T. Yamamoto, and A. Markovitz. 1976. Second-site mutations in capR(lon) strains of Escherichia coli K-12 that prevent radiation sensitivity and allow bacteriophage lambda to lysogenize. J. Bacteriol. 127:1208–1216.google scholarpdf
253Gehring, K., A. Charbit, E. Brissaud, and M. Hofnung. 1987. Bacteriophage lambda receptor site on the Escherichia coli K-12 lamB protein. J. Bacteriol. 169:2103–2106.google scholarpdf
254Gellert, M., and M. L. Bullock. 1970. DNA ligase mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 67:1580–1587.google scholarpdf
255Gellert, M., M. H. O’Dea, T. Itoh, and J.-I. Tomizawa. 1976. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. USA 73:4474–4478.google scholarpdf
256Georgopoulos, C. P. 1971. Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. Natl. Acad. Sci. USA 68:2977–2981.google scholarpdf
257Georgopoulos, C. P. 1977. A new bacterial gene groPC which affects phage lambda DNA replication. Mol. Gen. Genet. 151:35–40.google scholarpdf
258Georgopoulos, C. P., R. W. Hendrix, and A. D. Kaiser. 1972. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nature New Biol. 239:38–41.google scholarpdf
259Georgopoulos, C. P., and I. Herskowitz. 1971. Escherichia coli mutants blocked in lambda DNA synthesis. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholarpdf
260Georgopoulos, C. P., J. Swindle, F. Keppel, M. Ballivet, R. Bisig, and H. Eisen. 1980. Studies on the E. coli groNB (nusB) gene which affects bacteriophage λ N gene function. Mol. Gen. Genet. 179:55–61.google scholarpdf
261Ghysen, A., and M. Pirionio. 1972. Relationship between the N function of bacteriophage λ and host RNA polymerase. J. Mol. Biol. 65:259—272.google scholarpdf
262Gibson, M. M., D. A. Bagga, C. G. Miller, and M. E. Maguire. 1991. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+transport system. Mol. Microbiol. 5:2753–2762.google scholarpdf
263Gibson, M. M., M. Price, and C. F. Higgins. 1984. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 160:122–130.google scholarpdf
264Ginther, C. L., and J. L. Ingraham. 1974. Cold-sensitive mutant of Salmonella typhimurium defective in nucleoside diphosphokinase. J. Bacteriol. 118:1020–1026.google scholarpdf
265Giordano, G., L. Grillet, R. Rosset, J. H. Dou, and E. Azoulay. 1978. Characterization of an E. coli mutant that is sensitive to chlorate when grown aerobically. Biochem. J. 176:553–561.google scholarpdf
266Glaser, J. H., and J. A. DeMoss. 1972. Comparison of nitrate reductase mutants of Escherichia coli selected by alternative procedures. Mol. Gen. Genet. 116:1–10.google scholarpdf
267Glickman, B. W., and M. Radman. 1980. Escherichia coli mutator mutants deficient in methylation instructed DNA mismatch correction. Proc. Natl. Acad. Sci. USA 77:1063–1067.google scholarpdf
268Glover, S. W. 1962. Valine-resistant mutants of Escherichia coli K-12. Genet. Res. 3:448–460.google scholarpdf
269Gollop, N., H. Tavori, and Z. Barak. 1982. Acetohydroxy acid synthase is a target for leucine- containing peptide toxicity in Escherichia coli. J. Bacteriol. 149:387–390.google scholarpdf
270Gollub, E., and D. B. Sprinson. 1969. A regulatory mutation in tyrosine biosynthesis. Biochem. Biophys. Res. Commun. 35:389–395.google scholarpdf
271Gollub, E. G., K. P. Liu, and D. B. Sprinson. 1973. A regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium. J. Bacteriol. 115:121–128.google scholarpdf
272Gots, J. S., C. E. Benson, and S. R. Shumas. 1972. Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyltransferase activities by deletion mutations in Salmonella typhimurium. J. Bacteriol. 112:910–916.google scholarpdf
273Green, L., and C. G. Mlller. 1980. Genetic mapping of the Salmonella typhimurium pepB locus. J. Bacteriol. 143:1524–1526.google scholarpdf
274Greenberg, J. T., J. H. Chou, P. A. Monach, and B. Demple. 1991. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. J. Bacteriol. 173:4433– 4439.google scholarpdf
275Greene, R. C., J. V. Hunter, and E. H. Coch. 1973. Properties of metK mutants of Escherichia coli K-12. J. Bacteriol. 115:57–67.google scholarpdf
276Gruell, J. M., H. Hennecke, J. Froehler, J. Thomale, G. Nass, and A. Böck. 1979. Escherichia coli mutants overproducing phenylalanyl transfer RNA synthetase and threonyl transfer RNA synthetase. J. Bacteriol. 137:480–489.google scholarpdf
277Guardiola, J., M. DeFelice, T. Klopotowski, and M. Iaccarino. 1974. Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12. J. Bacteriol. 117:393 405.google scholarpdf
278Guardiola, J., and M. Iaccarino. 1971. Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids. J. Bacteriol. 108:1034–1044.google scholarpdf
279Guarneros, G., G. Machado, P. Guzman and E. Garay. 1987. Genetic and physical location of the Escherichia coli rap locus, which is essential for growth of bacteriophage lambda. J. Bacteriol. 169:5188–5192.google scholarpdf
280Guest, J. R. 1969. Biochemical and genetic studies with nitrate reductase C-gene mutants of Escherichia coli. Mol. Gen. Genet. 105:285–297.google scholarpdf
281Guest, J. R. 1979. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. J. Gen. Microbiol. 115:259–271.google scholarpdf
282Gupta, A., and S. Kumar. 1985. Roles of internally and externally supplied cyclic AMP in the growth response of Escherichia coli to sodium chloride. Indian J. Exp. Biol. 23:647–652.google scholarpdf
283Guterman, S. K., and L. Dann. 1973. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 114:1225–1230.google scholarpdf
284Guterman, S. K., A. Wright, and D. H. Boyd. 1975. Genes affecting coliphage BF23 and E colicin sensitivity in Salmonella typhimurium. J. Bacteriol. 124:1351–1358.google scholarpdf
285Guth, A., R. Engel, and B. E. Tropp. 1980. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli. J. Bacteriol. 143:538–539.google scholarpdf
286Hachler, H., S. P. Cohen, and S. B. Levy. 1991. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J. Bacteriol. 173: 5532– 5538.google scholarpdf
287Hacking, A. J., and E. C. C. Lin. 1976. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J. Bacteriol. 126:1166–1172.google scholarpdf
288Hadar, R., and J. Kuhn. 1977. A mutant constitutive for aromatic permease. FEBS Lett. 76:77–80.google scholarpdf
289Hafner, E. W., C. W. Tabor, and H. Tabor. 1977. Isolation of a metK mutant with a temperature- sensitive S-adenosylmethionine synthetase. J. Bacteriol. 132:832–840.google scholarpdf
290Hall, B. G. 1982. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J. Bacteriol. 151:269–273.google scholarpdf
291Hall, M. N., and T. J. Silhavy. 1981. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. J. Mol. Biol. 146:23–44.google scholarpdf
292Halpern, Y. S., and H. E. Umbarger. 1961. Utilization of L-glutamic acid and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli. J. Gen. Microbiol. 26:175–183.google scholarpdf
293Halsall, D. M. 1975. Strains of E. coli with defective lysine transport systems. Biochem. Genet. 13:109–124.google scholarpdf
294Hama, H., Y. Sumita, Y. Kakutani, M. Tsuda, and T. Tsuchiya. 1990. Target of serine inhibition in Escherichia coli. Biochem. Biophys. Res. Commun. 168:1211–1216.google scholarpdf
295Hammelburger, J. W., and G. A. Orr. 1983. Interaction of sn-glycerol 3-phosphorothioate with Escherichia coli: effect on cell growth and metabolism. J. Bacteriol. 156:789–799.google scholarpdf
296Hammer, K., K. F. Jensen, P. Poulsen, A. B. Oppenheim, and M. Gottesman. 1987. Isolation of Escherichia coli rpoB mutants resistant to killing by lambda cII protein and altered in pyrE gene attenuation. J. Bacteriol. 169:5289–5297.google scholarpdf
297Hancock, R. E. W., S. W. Farmer, Z. Li, and K. Poole. 1991. Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and ompF porin of Escherichia coli. Antimicrob. Agents Chemother. 35:1309–1314.google scholarpdf
298Hane, M. W., and T. H. Wood. 1969. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J. Bacteriol. 99:238–241.google scholarpdf
299Hantke, K. 1976. Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. FEBS Lett. 70:109–112.google scholarpdf
300Hantke, K. 1987. Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol. Gen. Genet. 210:135–139.google scholarpdf
301Hardaway, K. L., and C. S. Buller. 1979. Effects of ethylenediaminetetraacetate on phospholipids and outer membrane function in Escherichia coli. J. Bacteriol. 137:62–68.google scholarpdf
302Harkness, R. E., and V. Braun. 1990. In vitro peptidoglycan synthesis by envelopes from Escherichia coli tolM mutants is inhibited by colicin M. J. Bacteriol. 172:498–500.google scholarpdf
303Harrison, L. I., H. N. Christiansen, M. E. Handlogten, D. L. Oxender, and S. C. Quay. 1975. Transport of L-4-azaleucine in Escherichia coli. J. Bacteriol. 122:957–965.google scholarpdf
304Hasenbank, R., C. Guthrie, G. Stoffler, H. G. Wittmann, L. Rosen, and D. Apirion. 1973. Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Mol. Gen. Genet. 127:1–18.google scholarpdf
305Heatwole, V. M., and R. L. Somerville. 1991. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12. J. Bacteriol. 173:108–115.google scholarpdf
306Hedges, R. W., and K. P. Shannon. 1984. Resistance to apramycin in Escherichia coli isolated from animals: detection of a novel aminoglycoside-modifying enzyme. J. Gen. Microbiol. 130:473– 482.google scholarpdf
307Held, W. A., and O. H. Smith. 1970. Regulation of the Escherichia coli tryptophan operon by early reactions in the aromatic pathway. J. Bacteriol. 101:202–208.google scholarpdf
308Held, W. A., and O. H. Smith. 1970. Mechanism of 3-methylanthranilic acid derepression of the tryptophan operon in Escherichia coli. J. Bacteriol. 101:209–217.google scholarpdf
309Helling, R. B. 1968. Selection of a mutant of Escherichia coli which has high mutation rates. J. Bacteriol. 96:975–980.google scholarpdf
310Helling, R. B., and B. S. Adams. 1970. Nalidixic acid-resistant auxotrophs of Escherichia coli. J. Bacteriol. 104:1027–1029.google scholarpdf
311Helling, R. B., and J. Kukora. 1971. Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J. Bacteriol. 105:1224–1226.google scholarpdf
312Helser, T. L., J. E. Davies, and J. E. Dahlberg. 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biol. 235:6–9.google scholarpdf
313Hengge, R., T. J. Larson, and W. Boos. 1983. sn-Glycerol-3-phosphate transport in Salmonella typhimurium. J. Bacteriol. 155:186–195.google scholarpdf
314Henning, U., I. Hindennach, and I. Haller. 1976. The major proteins of the Escherichia coli outer cell envelope membrane: evidence for the structural gene of protein II. FEBS Lett. 61:46–48.google scholarpdf
315Heyde, M., and R. Portalier. 1982. New pleiotropic alkaline phosphatase-negative mutants of Escherichia coli K-12. J. Bacteriol. 151:529–533.google scholarpdf
316Heyde, M., and R. Portalier. 1983. Isolation and characterization of a new type of Escherichia coli K12 phoB mutants. Mol. Gen. Genet. 190:122–127.google scholarpdf
317Higgins, C. F., M. M. Hardie, D. Jamieson, and L. M. Powell. 1983. Genetic map of the opp (oligopeptide permease) locus of Salmonella typhimurium. J. Bacteriol. 153:830–836.google scholarpdf
318Hiraga, S. 1969. Operator mutants of the tryptophan operon in Escherichia coli. J. Mol. Biol. 39:159–179.google scholarpdf
319Hiraga, S., K. Igarashi, and T. Yura. 1967. A deoxythymidine kinase deficient mutant of Escherichia coli. I. Isolation and some properties. Biochem. Biophys. Acta 145:41–51.google scholarpdf
320Hiraga, S., K. Ito, T. Matsuyama, H. Ozaki, and T. Yura. 1968. 5-Methyltryptophan-resistant mutations linked with the arginine G marker in Escherichia coli. J. Bacteriol. 96:1880–1881.google scholarpdf
321Hirota, Y., M. Inuzuka, and M. Tomoeda. 1966. Elective selection of proline-requiring mutants. J. Bacteriol. 91:2392.google scholarpdf
322Hirshfield, I. N., R. Dedeken, P. C. Horn, D. A. Hopwood, and W. K. Maas. 1968. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. III. Repression of enzymes of arginine biosyntheses in arginyl-tRNA synthetase mutants. J. Mol. Biol. 35:83–93.google scholarpdf
323Hirshfield, I. N., and P. C. Zamecnik. 1972. Thiosine-resistant mutants of Escherichia coli K-12 with growth medium-dependent lysyl-tRNA synthetase activity. I. Isolation and physiological characterization. Biochim. Biophys. Acta 259:330–343.google scholarpdf
324Hobson, A. C. 1974. A norleucine-resistant mutant of Salmonella typhimurium with a possible defect in valine uptake or regulation. J. Gen. Microbiol. 82:425–429.google scholarpdf
325Hoffee, P. A. 1968. 2-Deoxyribose gene-enzyme complex in Salmonella typhimurium. J. Bacteriol. 95:449–457.google scholarpdf
326Hoffmeyer, J., and J. Neuhard. 1971. Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium. J. Bacteriol. 106:14–24.google scholarpdf
327Hofnung, M., and M. Schwartz. 1971. Mutations allowing growth on maltose of Escherichia coli K-12 strains with a deleted malT gene. Mol. Gen. Genet. 112:117–132.google scholarpdf
328Holland, J., I. B. Holland, and S. I. Ahmad. 1991. DNA damage by 8-methoxypsoralen plus near UV light, puvA and its repair in Escherichia coli: genetic analysis. Mutat. Res. 254:289–298.google scholarpdf
329Hooper, D. C., J. S. Wolfson, M. A. Bozza, and E. Y. Ng. 1992. Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob. Agents Chemother. 36:1151–1154.google scholarpdf
330Horiuchi, T., S. Horiuchi, and A. Novick. 1963. The genetic basis of hyper-synthesis of β- galactoside. Genetics 48:157–169.google scholarpdf
331Housley, P. R., A. D. Leavitt, and H. J. Whitfield. 1981. Genetic analysis of a temperature- sensitive Salmonella typhimurium rho mutant with an altered Rho-associated polycytidylate- dependent adenosine triphosphatase activity. J. Bacteriol. 147:13–24.google scholarpdf
332Howard-Flanders, P., and L. Theriot. 1962. A method for selecting radiation-sensitive mutants of Escherichia coli. Genetics 47:1219–1224.google scholarpdf
333Hrebenda, J., H. Heleszko, K. Brzostek, and J. Bielecki. 1985. Mutation affecting resistance of Escherichia coli K12 to nalidixic acid. J. Gen. Microbiol. 131:2285–2292.google scholarpdf
334Hudson, H. P., A. A. Lindberg, and B. A. D. Stocker. 1978. Lipopolysaccharide core defects in Salmonella typhimurium mutants which are resistant to Felix O phage but retain smooth character. J. Gen. Microbiol. 109:97–112.google scholarpdf
335Hughes, D. 1986. The isolation and mapping of EF-Tu mutations in Salmonella typhimurium. Mol. Gen. Genet. 202:108–111.google scholarpdf
336Hughes, K. T., B. T. Cookson, D. Ladika, B. M. Olivera, and J. R. Roth. 1983. 6- Aminonicotinamide-resistant mutants of Salmonella typhimurium. J. Bacteriol. 154:1126–1136.google scholarpdf
337Hughes, K. T., D. Ladika, J. R. Roth, and B. M. Olivera. 1983. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 155:213–221.google scholarpdf
338Hulanicka, D. 1972. Resistance to sulfate analogs in Salmonella typhimurium. Acta Biochim. Pol. 19:367–376.google scholar
339Hulanicka, D., and T. Klopotowsi. 1972. Mutants of Salmonella typhimurium resistant to triazole. Acta Biochim. Pol. 19:251–260.google scholarpdf
340Hulanicka, M. D., S. G. Hallquist, N. M. Kredich, and T. Mojica-A. 1979. Regulation of O- acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J. Bacteriol. 140:141–146.google scholarpdf
341Hulanicka, M. D., and N. M. Kredich. 1976. A mutation affecting expression of the gene coding for serine transacetylase in Salmonella typhimurium. Mol. Gen. Genet. 148:143–148.google scholarpdf
342Hull, R., J. D. Klinger, and E. E. M. Moody. 1976. Isolation and characterization of mutants of Escherichia coli K12 resistant to the new aminoglycoside antibiotic, amikacin. J. Gen. Microbiol. 94:389–394.google scholarpdf
343Hummel, H., W. Piepersberg, and A. Böck. 1979. Analysis of lincomycin resistance mutations in Escherichia coli. Mol. Gen. Genet. 169:345–347.google scholarpdf
344Hussain, M., S. Ichihara, and S. Mizushima. 1980. Accumulation of glyceride containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J. Biol. Chem. 255:3707–3712.google scholarpdf
345Hwang, Y.-W., R. Engel, and B. E. Tropp. 1984. Correlation of 3,4-dihydroxybutyl 1- phosphonate resistance with a defect in cardiolipin synthesis in Escherichia coli. J. Bacteriol. 157:846–856.google scholarpdf
346Ibe, S. N., A. J. Sinskey, and D. Botstein. 1982. Genetic mapping of mutations in a highly radiation-resistant mutant of Salmonella typhimurium LT2. J. Bacteriol. 152:260–268.google scholarpdf
347Icho, T., and T. Iino. 1978. Isolation and characterization of motile Escherichia coli mutants resistant to bacteriophage χ. J. Bacteriol. 134:854–860.google scholarpdf
348Igarishi, K., S. Hiraga, and T. Yura. 1967. A deoxythymidine kinase deficient mutant of Escherichia coli. II. Mapping and transduction studies with phage φ80. Genetics 57:643–654.google scholarpdf
349Iino, T. 1977. Genetics of structure and function of bacterial flagella. Annu. Rev. Genet. 11:161–182.google scholarpdf
350Ilag, L. L., D. Jahn, G. Eggertsson, and D. Söll. 1991. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J. Bacteriol. 173:3408–3413.google scholarpdf
351Im, S. W. K., and J. Pittard. 1971. Phenylalanine biosynthesis in Escherichia coli K-12: mutants derepressed for chorismate mutase P-prephenate dehydratase. J. Bacteriol. 106:784–790.google scholarpdf
352Inoko, H., and M. Imai. 1976. Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho. Mol. Gen. Genet. 143:211–221.google scholarpdf
353Inoko, H., K. Shigesada, and M. Imai. 1977. Isolation and characterization of conditional-lethal rho mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 74:1162–1166.google scholarpdf
354Ishidsu, J.-I. 1973. Device of a method for isolation of arginine sensitive mutants in Salmonella typhimurium. Jpn. J. Genet. 48:377–379.google scholarpdf
355Ito, M., and Y. Ohnishi. 1981. Isolation of Escherichia coli mutants which are resistant to an inhibitor of proton-ATPase, tributyltin and also to uncouplers of oxidative phosphorylation. FEBS Lett. 136:225–230.google scholarpdf
356Ivell, R., O. Fasano, J.-B. Crechet, and A. Parmeggiani. 1981. Characterization of a kirromycin resistant elongation factor Tu from Escherichia coli. Biochemistry 20:1355–1361.google scholarpdf
357Iwakura, Y., A. Ishihama, and T. Yura. 1973. RNA polymerase mutants of Escherichia coli. II. Streptolydigin resistance and its relation to rifampicin resistance. Mol. Gen. Genet. 121:181–196.google scholarpdf
358Iwaya, M., R. Goldman, D. J. Tipper, B. Feingold, and J. L. Strominger. 1978. Morphology of an Escherichia coli mutant with a temperature-dependent round cell shape. J. Bacteriol. 136:1143– 1158.google scholarpdf
359Iwaya, M., C. W. Jones, J. Khorana, and J. L. Strominger. 1978. Mapping of the mecillinam- resistant, round morphological mutants of Escherichia coli. J. Bacteriol. 133:196–202.google scholarpdf
360Jackson, B. J., J.-P. Bohin, and E. P. Kennedy. 1984. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J. Bacteriol. 160:976–981.google scholarpdf
361Jackson, J. H., E. J. Davis, A. C. Madu, and S. E. Braxter. 1981. Three-factor reciprocal cross mapping of a gene that causes expression of feedback resistant acetohydroxy acid synthase in Escherichia coli K-12. Mol. Gen. Genet. 181:417–419.google scholarpdf
362Jaffe, A., Y. A. Chabbert, and E. Derlot. 1983. Selection and characterization of beta-lactam- resistant Escherichia coli K-12 mutants. Antimicrob. Agents Chemother. 23:622–625.google scholarpdf
363Jaffe, A., Y. A. Chabbert, and O. Semonin. 1982. Role of porin proteins ompF and ompC in the permeation of beta lactams. Antimicrob. Agents Chemother. 22:942–948.google scholarpdf
364Janzer, J. J., H. Stan-Lotter, and K. E. Sanderson. 1981. Isolation and characterization of hemin-permeable envelope-defective mutants of Salmonella typhimurium. Can. J. Microbiol. 27:226– 237.google scholarpdf
365Jegede, V. A., F. Spencer, and J. E. Brenchley. 1976. Thialysine-resistant mutant of Salmonella typhimurium with a lesion in the thrA gene. Genetics 83:619–632.google scholarpdf
366Jenness, D. D., and H. K. Schachman. 1980. pyrB mutations as suppressors of arginine auxotrophy in Salmonella typhimurium. J. Bacteriol. 141:33–40.google scholarpdf
367Jensen, K. F. 1979. Apparent involvement of purines in the control of expression of Salmonella typhimurium pyr genes: analysis of a leaky guaB mutant resistant to pyrimidine analogs. J. Bacteriol. 138:731–738.google scholarpdf
368Jensen, K. F., J. Neuhard, and L. Shack. 1982. RNA polymerase involvement in the control of Salmonella typhimurium pyr gene expression. Isolation and characteristics of a fluorouracil resistant mutant with high, constitutive expression of pyrB and pyrE due to a mutation in rpoBC. EMBO J. 1:69–74.google scholarpdf
369Jin, D. J., and C. A. Gross. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202:45–58.google scholarpdf
370Jochimsen, B., P. Nygaard, and T. Vestergaard. 1975. Location on the chromosome of Escherichia coli of genes governing purine metabolism: adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol. Gen. Genet. 143:85–91.google scholarpdf
371Jochimsen, B. U., B. Hove-Jensen, B. B. Carber, and J. S. Gots. 1985. Characteristics of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase. J. Gen. Microbiol. 131:245–252.google scholarpdf
372Johansson, V., A. Aarti, M. Nurminen, and P. H. Makela. 1978. Outer membrane protein- specific bacteriophages of Salmonella typhimurium. J. Gen. Microbiol. 107:183–187.google scholarpdf
373Johnson, B. F. 1977. Fine structure mapping and properties of mutations suppressing the lon mutation in Escherichia coli K-12 and B strains. Genet. Res. 30:273–286.google scholarpdf
374Johnston, H. M., and J. R. Roth. 1979. Histidine mutants requiring adenine: selection of mutants with reduced hisG expression in Salmonella typhimurium. Genetics 92:1–15.google scholarpdf
375Johnston, H. M., and J. R. Roth. 1981. Genetic analysis of the histidine operon control region of Salmonella typhimurium. J. Mol. Biol. 145:713—734.google scholarpdf
376Johnston, M. A., and H. Pivnick. 1970. Use of autocytotoxic β-D-galactosides for selective growth of Salmonella typhimurium in the presence of coliforms. Can. J. Microbiol. 16:83–89.google scholarpdf
377Jones-Mortimer, M., and H. L. Kornberg. 1974. Genetical analysis of fructose utilization by Escherichia coli. Proc. R. Soc. London Ser. B 187:121–131.google scholarpdf
378Jones-Mortimer, M. C., and H. L. Kornberg. 1976. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12. J. Gen. Microbiol. 96:383–391.google scholarpdf
379Jones-Mortimer, M. C., and H. L Kornberg. 1980. Amino-sugar transport systems of Escherichia coli K12. J. Gen. Microbiol. 117:369–376.google scholarpdf
380Josephsen, J., K. Hammer-Jespersen, and T. D. Hansen. 1983. Mapping of the gene for cytidine deaminase (cdd) in Escherichia coli K-12. J. Bacteriol. 154:72–75.google scholarpdf
381Joshi, A., J. Z. Siddiqui, M. Verma, and M. Chakravorty. 1982. Participation of host proteins in the morphogenesis of bacteriophage P22. Mol. Gen. Genet. 186:44–49.google scholarpdf
382Joshi, A., M. Verma, and M. Chakravorty. 1982. Thiolutin-resistant mutants of Salmonella typhimurium. Antimicrob. Agents Chemother. 22:541–547.google scholarpdf
383Juhl, M. J., and D. P. Clark. 1990. Thiophene-degrading Escherichia coli mutants possess sulfone oxidase activity and show altered resistance to sulfur-containing antibiotics. Appl. Environ. Microbiol. 56:3179–3185.google scholarpdf
384Jung, J. U., C. Gutierrez, and M. R. Villarejo. 1989. Sequence of an osmotically inducible lipoprotein gene. J. Bacteriol. 171:511–520.google scholarpdf
385Justesen, J., and J. Neuhard. 1975. pyrR identical to pyrH in Salmonella typhimurium: control of expression of the pyr genes. J. Bacteriol. 123:851–854.google scholarpdf
386Kadner, R. J. 1977. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J. Bacteriol. 129:207–216.google scholarpdf
387Kadner, R. J., K. Heller, J. W. Coulton, and V. Braun. 1980. Genetic control of hydroxamate- mediated iron uptake in Escherichia coli. J. Bacteriol. 143:256–264.google scholarpdf
388Kadner, R. J., and C. L Liggins. 1973. Transport of vitamin B12 in Escherichia coli: genetic studies. J. Bacteriol. 115:514–521.google scholarpdf
389Kadner, R. J., and D. M. Shattuck-Eidens. 1983. Genetic control of the hexose phosphate transport system of Escherichia coli: mapping of deletion and insertion mutations in the uhp region. J. Bacteriol. 155:1052–1061.google scholarpdf
390Kalle, C. P., and J. S. Gots. 1961. Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogues. Biochim. Biophys. Acta 53:66–173.google scholarpdf
391Kalman, M., D. R. Gentry, and M. Cashel. 1991. Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol. Gen. Genet. 225:379–386.google scholarpdf
392Kanner, B. I., and D. L. Gutnick. 1972. Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. J. Bacteriol. 111:287–289.google scholarpdf
393Kaplan, L., H. C. Reilly, and C. C. Stock. 1959. Action of azaserine on Escherichia coli. J. Bacteriol. 78:511–519.google scholarpdf
394Kaplan, S., and D. Anderson. 1968. Selection of temperature-sensitive activating enzyme mutants in Escherichia coli. J. Bacteriol. 95:991–997.google scholarpdf
395Kast, P., and H. Hennecke. 1991. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J. Mol. Biol. 222:99–124.google scholarpdf
396Katz, L. 1970. Selection of AraB and AraC mutants of Escherichia coli B/r by resistance to ribitol. J. Bacteriol. 102:593–595.google scholarpdf
397Kawakami, T., Y. Akizawa, T. Ishikawa, T. Shimamoto, M. Tsuda, and T. Tsuchiya. 1988. Amino acid substitutions and alteration in cation specificity in the melibiose carrier of Escherichia coli. J. Biol. Chem. 263:14276–14280.google scholarpdf
398Kawamoto, S., S. Tokuyama, S. Yashima, and Y. Eguchi. 1984. Genetic mapping of cold resistance gene of Escherichia coli. Agric. Biol. Chem. 48:2067–2071.google scholarpdf
399Kawasaki, T., and Y. Nose. 1969. Thiamine regulatory mutants in Escherichia coli. J. Biochem. 65:417–425.google scholarpdf
400Kay, W. W. 1972. Genetic control of the metabolism of propionate by Escherichia coli K12. Biochim. Biophys. Acta 264:508–521.google scholarpdf
401Kay, W. W., and H. L. Kornberg. 1969. Genetic control of the uptake of Ci-dicarboxylic acids by Escherichia coli. FEBS Lett. 3:93–96.google scholarpdf
402Kelker, N. E., and W. K. Maas. 1974. Selection for genetically repressible (Arg R+) strains of Escherichia coli K12 from genetically derepressed (Arg R-) mutants using acetylnorvaline. Mol. Gen. Genet. 131:131–136.google scholarpdf
403Kelln, R. A., and G. A. O’Donovan. 1976. Isolation and partial characteristics of an argR mutant of Salmonella typhimurium. J. Bacteriol. 128:528–535.google scholarpdf
404Kelln, R. A., and V. L. Zak. 1980. A mutation in Salmonella typhimurium imparting conditional resistance to 5-fluorouracil and a bioenergetic defect mapping of cad. Mol. Gen. Genet. 179:678–682.google scholarpdf
405Kemper, J. 1974. Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. J. Bacteriol. 117:94–99.google scholarpdf
406Kessler, D. P., and H. V. Rickenberg. 1964. A new method for the selection of mutants of Escherichia coli forming β-galactosidase constitutively. Biochim. Biophys. Acta 90:609–610.google scholarpdf
407Kier, L. D., R. M. Weppelman, and B. N. Ames. 1977. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol. 130:420–428.google scholarpdf
408Kier, L. D., R. M. Weppelman, and B. N. Ames. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J. Bacteriol. 138:155–161.google scholarpdf
409Killmann, H., and V. Braun. 1992. An aspartate deletion mutation defines a binding site of the multifunctional fhuA outer membrane receptor of Escherichia coli K-12. J. Bacteriol. 174:3479–3486.google scholarpdf
410Kim, K. T., and O. J. Yoo. 1987. Inhibition of coliphage N4 infection of Escherichia coli mutant defective in mannose permease. Korean J. Microbiol. 25:184–188.google scholarpdf
411Kleckner, N., J. Roth, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116:125–159.google scholarpdf
412Kline, E. L. 1972. New amino acid regulatory locus having unusual properties in heterozygous merodiploids. J. Bacteriol. 110:1127–1134.google scholarpdf
413Kocharyan, S. M. 1979. Positive method for selection of adenylate cyclase and cyclic adenosine 3′, 5′-monophosphate receptor protein deficient mutants of Escherichia coli K12. Biol. Zh. Arm. 32:346–351.google scholar
414Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole E. coli chromosome: application of a new strategy for the rapid analysis and sorting of a large genomic library. Cell 50:495–508.google scholarpdf
415Komatsu, Y., and K. Tanaka. 1972. A showdomycin-resistant mutant of Escherichia coli K-12 with altered nucleoside transport character. Biochim. Biophys. Acta 288:390–403.google scholarpdf
416Komeda, Y. 1982. Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J. Bacteriol. 150:16–26.google scholarpdf
417Komeda, Y., M. Silverman, and M. Simon. 1977. Genetic analysis of Escherichia coli K-12 region I flagellar mutants. J. Bacteriol. 131:801–808.google scholarpdf
418Kornberg, H. L., and J. Smith. 1972. Genetic control of glucose uptake by Escherichia coli. FEBS Lett. 20:270–272.google scholarpdf
419Kornberg, H. L., and P. D. Watts. 1978. Roles of crr-gene products in regulating carbohydrate uptake by Escherichia coli. FEBS Lett. 89:329–332.google scholarpdf
420Korteland, J., N. Overbeeke, P. De Graaff, P. Overduin, and B. Lugtenberg. 1985. Role of the Arg158 residue of the outer membrane phoE pore protein of Escherichia coli K12 in bacteriophage TC45 recognition and in channel characteristics. Eur. J. Biochem. 152:691–697.google scholarpdf
421Kowit, J. D., W.-N. Choy, S. P. Champe, and A. L. Goldberg. 1976. Role and location of “protease 1” from Escherichia coli. J. Bacteriol. 128:776–784.google scholarpdf
422Krajewska-Grynkiewicz, K., W. Walczak, and T. Klopotowski. 1971. Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine. J. Bacteriol. 105:28–37.google scholarpdf
423Kramer, G. F., and B. N. Ames. 1988. Mechanisms of mutagenicity and toxicity of sodium selenite in Salmonella typhimurium. Mutat. Res. 201:169–180.google scholarpdf
424Kramer, G. F., J. C. Baker, and B. N. Ames. 1988. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response. J. Bacteriol. 170: 2344–2351.google scholarpdf
425Kraus, J., D. Söll, and K. B. Low. 1979. Glutamyl-γ-methyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metJ and metK loci. Genet. Res. 33:49–55.google scholarpdf
426Kricker, M., and B. G. Hall. 1984. Directed evolution of cellobiose utilization in Escherichia coli K12. Mol. Biol. Evol. 1:171–182.google scholarpdf
427Kuhn, A. H. U., M. L. J. Moncany, E. Kellenberger, and R. Hausmann. 1982. Involvement of the bacterial groM gene product in bacteriophage T7 reproduction. J. Virol. 41:657–673.google scholarpdf
428Kuhn, J., and R. L. Somerville. 1971. Mutant strains of Escherichia coli K12 that can use D- amino acids. Proc. Natl. Acad. Sci. USA 68:2484 2487.google scholarpdf
429Kumar, S. 1976. Properties of adenyl cyclase and cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 125:545–555.google scholarpdf
430Kunert, K. J., C. F. Cresswell, A. Schmidt, P. M. Mullineaux, and C. H. Foyer. 1990. Variations in the activity of glutathione reductase and the cellular glutathione content in relation to sensitivity to methyl viologen in Escherichia coli. Arch. Biochem. Biophys. 282:233–238.google scholarpdf
431Kuroda, M., S. De Waard, K. Mizushima, M. Tsuda, P. Postma, and T. Tsuchiya. 1992. Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium. J. Biol. Chem. 267:18336–18341.google scholarpdf
432Kustu, S. G., and G. F.-L. Ames. 1973. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J. Bacteriol. 116:107–113.google scholarpdf
433Kustu, S. G., N. C. McFarland, S. P. Hui, B. Esmon, and G. F.-L. Ames. 1979. Nitrogen control in Salmonella typhimurium: coregulation of synthesis of glutamine synthetase and amino acid transport systems. J. Bacteriol. 138:218–234.google scholarpdf
434Kuwano, M., D. Schlessinger, G. Rinaldi, L. Felicetti, and G. P. Tocchini-Valentini. 1971. G factor mutants of Escherichia coli: map location and properties. Biochem. Biophys. Res. Commun. 42:441–444.google scholarpdf
435Lakshmi, T. M., and R. B. Helling. 1976. Selection for citrate synthease deficiency in icd mutants of Escherichia coli. J. Bacteriol. 127:76–83.google scholarpdf
436Lambden, P. R., and J. R. Guest. 1976. A novel method for isolating chlorate-resistant mutants of Escherichia coli K12 by anaerobic selection on a lactate plus fumarate medium. J. Gen. Microbiol. 93:173–176.google scholarpdf
437Langley, D., and J. R. Guest. 1974. Biochemical and genetic characteristics of deletion and other mutant strains of Salmonella typhimurium LT2 lacking α-ketoacid dehydrogenase complex activities. J. Gen. Microbiol. 82:319–335.google scholarpdf
438Langley, D., and J. R. Guest. 1977. Biochemical studies of the α-ketoacid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J. Gen. Microbiol. 99:263–276.google scholarpdf
439Langley, D., and J. R. Guest. 1978. Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia coli K12: genetic characterization and regulatory properties of deletion mutants. J. Gen. Microbiol. 106:103–117.google scholarpdf
440Langridge, J. 1969. Mutations conferring quantitative and qualitative increases in β-galactosidase activity in Escherichia coli. Mol. Gen. Genet. 105:74–83.google scholarpdf
441LaRossa, R. A., and J. V. Schloss. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259:8753–8757.google scholarpdf
442LaRossa, R. A., and D. R. Smulski. 1984. ilvB-encloded acetolactate synthase is resistant to the herbicide sulfometuron methyl. J. Bacteriol. 160:391–394.google scholarpdf
443LaRossa, R. A., T. K. Van Dyk, and D. R. Smulski. 1987. Toxic accumulation of α-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J. Bacteriol. 169:1372–1378.google scholarpdf
444LaRossa, R. A., T. K. Van Dyk, and D. R. Smulski. 1990. A need for metabolic insulation: lessons from sulfonylurea genetics. Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York.google scholarpdf
445Latil, M., M. Murgier, A. Lazdunski, and C. Lazdunski. 1976. Isolation and genetic mapping of Escherichia coli aminopeptidase mutants. Mol. Gen. Genet. 148:43–47.google scholarpdf
446Lavina, M., A. P. Pugsley, and F. Moreno. 1986. Identification, mapping, cloning, and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K-12. J. Gen. Microbiol. 132:1685–1693.google scholarpdf
447Lawrence, D. A., D. A. Smith, and R. J. Rowbury. 1968. Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58:473–492.google scholarpdf
448Lawther, R. P., D. H. Calhoun, C. W. Adams, C. A. Hauser, J. Gray, and G. W. Hatfield. 1981. Molecular basis of valine resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 78:922–925.google scholarpdf
449Lazzaroni, J. C., and R. C. Portalier. 1981. Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12. J. Bacteriol. 145:1351–1358.google scholarpdf
450LeBlanc, D. J., and R. P. Mortlock. 1971. Metabolism of D-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 106:90–96.google scholarpdf
451Lee, R. S.-F., J. Pagan, S. Wilke-Mounts, and A. E. Senior. 1991. Characterization of Escherichia coli ATP synthase beta-subunit mutations using a chromosomal deletion strain. Biochemistry 30:6842–6847.google scholarpdf
452Lehmann, V., E. Rupprecht, and M. J. Osborn. 1977. Isolation of mutants conditionally blocked in the biosynthesis of the 3-deoxy-D-manno-octulosonic acid-lipid A part of lipopolysaccharides derived from Salmonella typhimurium. Eur. J. Biochem. 76:41–49.google scholarpdf
453Leifer, Z., R. Engel, and B. E. Tropp. 1977. Transport of 3,4-dihydroxybutyl-l-phosphonate, an analogue of sn-glycerol 3-phosphate. J. Bacteriol. 130:968–971.google scholarpdf
454Leisinger, T., D. Haas, and M. P. Hegarty. 1972. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim. Biophys. Acta 262:214–219.google scholarpdf
455Lemmon, R. D., J. J. Rowe, and G. J. Tritz. 1980. Isolation and characterization of mutants of Escherichia coli defective in pyridine nucleotide cycle enyzmes. Curr. Microbiol. 4:31–35.google scholarpdf
456Lengeler, J. 1980. Characterization of mutants of Escherichia coli K12, selected by resistance to streptozotocin. Mol. Gen. Genet. 179:49–54.google scholarpdf
457Lengeler, J., and H. Steinberger. 1978. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol. Gen. Genet. 164:163–169.google scholarpdf
458Lerman, R. D., and B. A. D. Stocker. 1981. Mutations in Salmonella typhimurium affecting synthesis of lipopolysaccharide core at high temperature. Wasmann J. Biol. 39:42–49.google scholarpdf
459Lester, B., and D. M. Bonner. 1957. Genetic control of raffinose utilization in Escherichia coli. J. Bacteriol. 73:544–552.google scholarpdf
460Levin, D. E., L. J. Marnett, and B. N. Ames. 1984. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102. Proc. Natl. Acad. Sci. USA 81:4457–4461.google scholarpdf
461Levine, R. A., and M. W. Taylor. 1981. Selection for purine regulatory mutants in an E. coli hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant. Mol. Gen. Genet. 181:313–318.google scholarpdf
462Levine, R. A., and M. W. Taylor. 1982. Mechanism of adenine toxicity in Escherichia coli. J. Bacteriol. 149:923–930.google scholarpdf
463LeVine, S. M., F. Ardeshir, and G. F.-L. Ames. 1980. Isolation and characterization of acetate kinase and phosphotransacetylase mutants of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 143:1081–1085.google scholarpdf
464Lieberman, M. A., and J.-S. Hong. 1974. A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport. Proc. Natl. Acad. Sci. USA 71:4395–4399.google scholarpdf
465Lieberman, M. A., M. Simon, and J.-S. Hong. 1977. Characterization of Escherichia coli mutant incapable of maintaining a transmembrane potential. J. Biol. Chem. 252:4056–4067.google scholarpdf
466Link, C. D., and A. M. Reiner. 1983. Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Mol. Gen. Genet. 189:337–339.google scholarpdf
467Liou, T.-F., M. Yoshikawa, and N. Tanaka. 1975. Alteration of ribosomal protein L5 in a thiopeptin resistant mutant of Escherichia coli. Biochem. Biophys. Res. Commun. 65:1096–1101.google scholarpdf
468Lipsett, M. N. 1978. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J. Bacteriol. 135:993–997.google scholarpdf
469Lisitsyn, N. A., E. D. Sverdlov, E. P. Moiseeva, and V. G. Nikiforov. 1985. Localization of a mutation leading to antibiotic streptolydigin resistance of E. coli RNA polymerase in the rpoB gene coding for beta-subunit of the enzyme. Bioorg. Khim. 11:132–134.google scholarpdf
470Livshits, V. A. 1976. Effect of 2,6-diaminopurine resistant mutations on the uptake of adenine and adenosine by adenine-requiring strains of Escherichia coli K12. Genetika 12:180–182.google scholar
471Lomax, M. S., and G. R. Greenberg. 1968. Characteristics of the deo operon: role in thymine utilization and sensitivity to deoxyribonucleosides. J. Bacteriol. 96:501–514.google scholarpdf
472Lomovskaya, O., and K. Lewis. 1992. emr, an Escherichia coli locus for multidrug resistance. Proc. Natl. Acad. Sci. USA 89:8938–8942.google scholarpdf
473Long, W. S., C. L. Slayman, and K. B. Low. 1978. Production of giant cells of Escherichia coli. J. Bacteriol. 133:995–1007.google scholarpdf
474Loomis, W. F., Jr., and B. Magasanik. 1965. Genetic control of catabolite repression of the lac operon in Escherichia coli. Biochem. Biophys. Res. Commun. 20:230–234.google scholarpdf
475Loomis, W. F., Jr., and B. Magasanik. 1967. The catabolite repression gene of the lac operon in Escherichia coli. J. Mol. Biol. 23:487–494.google scholarpdf
476Lorowitz, W., and D. Clark. 1982. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J. Bacteriol. 152:935–938.google scholarpdf
477Low, K. B., F. Gates, T. Goldstein, and D. Söll. 1971. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J. Bacteriol. 108:742–750.google scholarpdf
478Luckey, M., and J. B. Neilands. 1976. Iron transport in Salmonella typhimurium LT-2: prevention, by ferrichrome, of adsorption of bacteriophages ES18 and ES18.hl to a common cell envelope receptor. J. Bacteriol. 127:1036–1037.google scholarpdf
479Luckey, M., J. R. Pollack, R. Wayne, B. N. Ames, and J. B. Neilands. 1972. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J. Bacteriol. 111:731–738.google scholarpdf
480Lutkenhaus, J. F. 1977. Role of a major outer membrane protein in Escherichia coli. J. Bacteriol. 131:631–637.google scholarpdf
481Maas, W. K. 1952. Pantothenate studies. II. Evidence from mutants for interference by salicylate with pantoate synthesis. J. Bacteriol. 63:227–232.google scholarpdf
482Maas, W. K. 1961. Repression of arginine formation. Cold Spring Harbor Symp. Quant. Biol. 26:183–190.google scholarpdf
483Maas, W. K. 1965. Genetic defect affecting an arginine permease and repression of arginine synthesis in E. coli. Fed. Proc. 24:1239.google scholarpdf
484MacPhee, D. G., V. Krishnapillai, R. J. Roantree, and B. A. D. Stocker. 1975. Mutations in Salmonella typhimurium conferring resistance to Felix O phage without loss of smooth character. J. Gen. Microbiol. 87:1–10.google scholarpdf
485Makela, P. H., M. Sarvas, S. Calcagno, and K. Lounatmaa. 1978. Isolation and genetic characterization of polymyxin resistant mutants of Salmonella. FEMS Microbiol. Lett. 3:323–326.google scholarpdf
486Makela, P. H., and B. A. D. Stocker. 1969. Genetics of polysaccharide biosynthesis. Annu. Rev. Genet. 3:291–322.google scholarpdf
487Maloy, S. R., and W. D. Nunn. 1981. Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol. 145:1110–1112.google scholarpdf
488Maloy, S. R., and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173–180.google scholarpdf
489Manning, P. A., A. Puspurs, and P. Reeves. 1976. Outer membrane of Escherichia coli K12: isolation of mutants with altered protein 3A by using host range mutants of bacteriophage K3. J. Bacteriol. 127:1080–1084.google scholarpdf
490Manning, P. A., and P. Reeves. 1976. Outer membrane of Escherichia coli K12: tsx mutants (resistant to bacteriophage T6 and colicin K) lack an outer membrane protein. Biochem. Biophys. Res. Commun. 71:466–471.google scholarpdf
491Manning, P. A., and P. Reeves. 1976. Outer membrane of Escherichia coli K12: differentiation of proteins 3A and 3B on acrylamide gels and further characterization of con tolG mutants. J. Bacteriol. 127:1070–1079.google scholarpdf
492Manning, P. A., and P. Reeves. 1978. Outer membrane proteins of Escherichia coli K12. Isolation of a common receptor protein for bacteriophage T-6 and colicin K. Mol. Gen. Genet. 158:279–286.google scholarpdf
493Manoil, C., and J. P. Rosenbusch. 1982. Conjugation deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane ompA protein. Mol. Gen. Genet. 187:148–156.google scholarpdf
494Mao, Y., and Z. Sheng. 1986. A phenylethyl alcohol resistant temperature sensitive dnaB mutant in Escherichia coli. Acta Genet. Sin. 13:81–88.google scholar
495Marakusha, B. I., V. G. Petrovskaya, and K. I. Volkovoi. 1986. Obtaining Salmonella typhimurium and Salmonella dublin neamine resistant mutants suitable for the development of vaccines and the characterization of their biological and genetic properties. Zh. Mikrobiol. Epidemiol. Immunobiol. 1986:3–8.google scholarpdf
496Marcus, M., and Y. S. Halpern. 1967. Genetic analysis of glutamate transport in Escherichia coli. J. Bacteriol. 93:1409–1415.google scholarpdf
497Marcus, M., and Y. S. Halpern. 1969. Genetic analysis of the glutamate permease in Escherichia coli K-12. J. Bacteriol. 97:1118–1128.google scholarpdf
498Mark, D. F., J. W. Chang, and C. F. Richardson. 1977. Genetic mapping of trxA, a gene affecting thioredoxin in Escherichia coli K12. Mol. Gen. Genet. 155:145–152.google scholarpdf
499Marquardt, J. L., D. A. Siegele, R. Kolter, and C. T. Walsh. 1992. Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174:5748–5752.google scholarpdf
500Martinez, D., and F. Whitehouse, Jr. 1973. Selective autocytotoxicity in a model system of Escherichia coli recombinants. J. Bacteriol. 114:882–884.google scholarpdf
501Masters, P. S., and J.-S. Hong. 1981. Genetics of the glutamine transport system in Escherichia coli. J. Bacteriol. 147:805–819.google scholarpdf
502Matsuzawa, H., S. Asoh, T. Ohta, S. Tamaki, and M. Matsuhashi. 1980. Further studies on rodA mutant: a round morphological mutant of Escherichia coli K12 with wild-type penicillin-binding protein 2. Agric. Biol. Chem. 44:2937–2941.google scholarpdf
503Matsuzawa, H., S. Ushiyama, Y. Koyama, and T. Ohta. 1984. Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia and Ib: defect in generation of the electrochemical proton gradient. J. Bacteriol. 160:733–739.google scholarpdf
504Mattern, I. E., and J. Pittard. 1971. Regulation of tyrosine biosynthesis in Escherichia coli K- 12: isolation and characterization of operator mutants. J. Bacteriol. 107:8–15.google scholarpdf
505McCalla, D. R., C. Kaiser, and M. H. L. Green. 1978. Genetics of nitrofurazone resistance in Escherichia coli. J. Bacteriol. 133:10–16.google scholarpdf
506McConville, M. L., and H. P. Charles. 1979. Mutants of Escherichia coli K12 accumulating porphobilinogen: a new locus, hemC. J. Gen. Microbiol. 111:193–200.google scholarpdf
507McConville, M. L., and H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155–164.google scholarpdf
508McEwen, J., and P. Silverman. 1980. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc. Natl. Acad. Sci. USA 77:513–517.google scholarpdf
509Meiss, H. K., W. J. Brill, and B. Magasanik. 1969. Genetic control of histidine degradation in Salmonella typhimurium LT-2. J. Biol. Chem. 244:5382–5391.google scholarpdf
510Melton, T., W. Kundig, P. E. Hartman, and N. Meadow. 1976. 3-Deoxy-3-fluoro-D-glucose- resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system. J. Bacteriol. 128:794–800.google scholarpdf
511Menzel, R., and J. Roth. 1981. Regulation of the genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J. Mol. Biol. 148:21–44.google scholarpdf
512Mett, V. L., F. I. Urmeeva, N. S. Kobets, T. V. Kolganova, K. A. Aliev, and E. S. Piruzyan. 1991. Cloning and expression of a mutant EPSP-synthase gene of E. coli in transgenic plants. Biotekhnologiya 3:19–22.google scholar
513Meynell, E. W. 1961. A phage χ, which attacks motile bacteria. J. Gen. Microbiol. 25:253–290.google scholarpdf
514Mikulka, T. W., B. I. Stieglitz, and J. M. Calvo. 1972. Leucyltransfer-ribonucleic acid synthetase from a wild-type and temperature-sensitive mutant of Salmonella typhimurium. J. Bacteriol. 19:584–593.google scholarpdf
515Mildener, B., T. P. Fondy, R. Engel, and B. E. Tropp. 1981. Effects of halo analogs of glycerol 3-phosphate and dihydroxyacetone phosphate upon Escherichia coli. Antimicrob. Agents Chemother. 19:678–681.google scholarpdf
516Miller, C. G., C. Heiman, and C. Yen. 1976. Mutants of Salmonella typhimurium deficient in an endopeptidase. J. Bacteriol. 127:490–497.google scholarpdf
517Miller, C. G., and G. Schwartz. 1978. Peptidase-deficient mutants of Escherichia coli. J. Bacteriol. 135:603–611.google scholarpdf
518Miller, E. S., and J. E. Brenchley. 1981. L-methionine SR-sulfoximine resistant glutamine synthetase from mutants of Salmonella typhimurium. J. Biol. Chem. 256:11307–11312.google scholarpdf
519Miller, H. I., and D. I. Friedman. 1977. Isolation of Escherichia coli mutants unable to support lambda integrative recombination. DNA Insertion Elements, Plasmids, and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholarpdf
520Miller, H. I., and D. I. Friedman. 1980. An E. coli gene product required for λ site specific recombination. Cell 20:711–719.google scholarpdf
521Miller, H. I., A. Kikuchi, H. A. Nash, R. A. Weisberg, and D. I. Friedman. 1978. Site-specific recombination of bacteriophage λ: the role of host gene products. Cold Spring Harbor Symp. Quant. Biol. 43:1121–1126.google scholarpdf
522Miller, H. I., M. Kirk, and H. Echols. 1981. SOS induction and autoregulation of the himA gene for site-specific recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 78:6754–6758.google scholarpdf
523Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholar
524Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.google scholar
525Miner, K. M., and L. Frank. 1974. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli. J. Bacteriol. 117:1093–1098.google scholarpdf
526Miyoshi, Y., and H. Yamagata. 1976. Sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. J. Bacteriol. 125:142–148.google scholarpdf
527Mojica, A. T. 1975. Transduction by phage PICM clr-100 in Salmonella typhimurium. Mol. Gen. Genet. 138:113 126.google scholarpdf
528Mojica, A. T., and E. Garcia. 1976. Growth of coliphage BF-23 on rough strains of Salmonella typhimurium. the bfe locus. Mol. Gen. Genet. 147:195–202.google scholarpdf
529Molnar, J., I. B. Holland, and Y. Mandi. 1977. Selection of lon mutants in Escherichia coli by treatment with phenothiazines. Genet. Res. 30:13–20.google scholarpdf
530Monard, D., J. Janecek, and H. V. Rickenberg. 1969. The enzymatic degradation of 3′,5′ cyclic AMP in strains of E. coli sensitive and resistant to catabolite repression. Biochem. Biophys. Res. Commun. 35:584–591.google scholarpdf
531Morimoto, R. I., A. Tissières, and C. Georgopoulos . 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.google scholar
532Morimyo, M., E. Hongo, H. Hama-Inaba, and I. Machida. 1992. Cloning and characterization of the mvrC gene of Escherichia coli K12 which confers resistance against methyl viologen toxicity. Nucleic Acids Res. 20:3159–3165.google scholarpdf
533Morona, R., and U. Henning. 1984. Host range mutants of bacteriophage OX-2 can use two different outer membrane proteins of Escherichia coli K-12 as receptors. J. Bacteriol. 159:579–582.google scholarpdf
534Morona, R., and U. Henning. 1986. New locus (ttr) in Escherichia coli K-12 affecting sensitivity to bacteriophage T2 and growth on oleate as the sole carbon source. J. Bacteriol. 168:534–540.google scholarpdf
535Morona, R., M. Klose, and U. Henning. 1984. Escherichia coli K-12 outer membrane protein OmpA as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J. Bacteriol. 159:570–578.google scholarpdf
536Morona, R., and P. Reeves. 1982. The tolC locus of Escherichia coli affects the expression of three major outer membrane proteins. J. Bacteriol. 150:1016–1023.google scholarpdf
537Mosher, M. E., L. K. White, J. Hermolin, and R. H. Fillingame. 1985. Proton-translocating ATPase of Escherichia coli: an uncE mutation impairing coupling between F-1 and F-0 but not F-0 mediated proton translocation. J. Biol. Chem. 260:4807–4814.google scholarpdf
538Mount, D. W. 1977. A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. Proc. Natl. Acad. Sci. USA 74:300–304.google scholarpdf
539Moyed, H. S. 1960. False feedback inhibition: inhibition of tryptophan biosynthesis by 5- methyltryptophan. J. Biol. Chem. 235:1098–1102.google scholarpdf
540Moyed, H. S. 1961. Interference with the feed-back control of histidine biosynthesis. J. Biol. Chem. 236:2261–2267.google scholarpdf
541Moyed, H. S., and K. P. Bertrand. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155:768–775.google scholarpdf
542Muir, M. E., D. R. Hanwell, and B. J. Wallace. 1981. Characterization of a respiratory mutant of Escherichia coli with reduced uptake of aminoglycoside antibiotics. Biochim. Biophys. Acta 638:234– 241.google scholarpdf
543Muller-Hill, B., L. Crapo, and W. Gilbert. 1968. Mutants that make more lac repressor. Proc. Natl. Acad. Sci. USA 59:1259–1264.google scholarpdf
544Munch-Petersen, A., and B. Mygind. 1976. Nucleoside transport systems in Escherichia coli K12: specificity and regulation. J. Cell. Physiol. 89:551–560.google scholarpdf
545Munch-Petersen, A., B. Mygind, A. Nicolaisen, and N. J. Pihl. 1979. Nucleoside transport in cells and membrane vesicles from Escherichia coli K12. J. Biol. Chem. 254:3730–3737.google scholarpdf
546Munch-Petersen, A., P. Nygaard, K. Hammer-Jespersen, and N. Fiil. 1972. Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K12. Eur. J. Biochem. 27:208– 215.google scholarpdf
547Munekiyo, R., T. Tsuzuki, and M. Sekiguchi. 1979. A new locus of Escherichia coli that determines sensitivity to bacteriophage φX174. J. Bacteriol. 138:1038–1040.google scholarpdf
548Murata, K., K. Tani, J. Kato, and I. Chibata. 1980. Excretion of glutathione by methylglyoxal- resistant Escherichia coli. J. Gen. Microbiol. 120:545–547.google scholarpdf
549Murooka, Y., and T. Harada. 1981. Regulation of derepressed synthesis of arylsulfatase by tyramine oxidase in Salmonella typhimurium. J. Bacteriol. 145:796–802.google scholarpdf
550Myers, D. E., B. A. D. Stocker, and R. J. Roantree. 1980. Mapping of genes determining penicillin-resistance and serum-sensitivity in Salmonella enteritidis. J. Gen. Microbiol. 118:367–376.google scholarpdf
551Myers, R. S., and S. R. Maloy. 1988. Mutations of putP that alter the lithium sensitivity of Salmonella typhimurium. Mol. Microbiol. 2:749–755.google scholarpdf
552Nagelkerke, F., and P. W. Postma. 1978. 2-Deoxygalactose, a specific substrate of the Salmonella typhimurium galactose permease: its use for the isolation of galP mutants. J. Bacteriol. 133:607–613.google scholarpdf
553Nakamura, H. 1979. Novel acriflavine resistance genes, acrC and acrD, in Escherichia coli K-12. J. Bacteriol. 139:8–12.google scholarpdf
554Nakamura, H. 1980. Complementation analysis between genes determining cell division, arcC, and DNA polymerase III, dnaE, in Escherichia coli K12. Mem. Konan Univ. Sci. Ser. 25:31–33.google scholarpdf
555Nakamura, H., A. Hase, and K. Hirayoshi. 1987. Temperature-sensitive phase in the cell cycle of ACR-C mutants of Escherichia coli K12. Mem. Konan Univ. Sci. Ser. 34:87–98.google scholarpdf
556Nakamura, Y., T. Kurihara, H. Saito, and H. Uchida. 1979. σ-subunit of Escherichia coli RNA polymerase affects the function of λ N gene. Proc. Natl. Acad. Sci. USA 76:4593–4597.google scholarpdf
557Nakayama, H., K. Nakayama, R. Nakayama, N. Irino, Y. Nakayama, and P. C. Hanawalt. 1984. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195:474–480.google scholarpdf
558Nakayama, K., S. Shiota, and H. Nakayama. 1988. Thymineless death in Escherichia coli mutants deficient in the recF recombination pathway. Can. J. Microbiol. 34:905–907.google scholarpdf
559Nashimoto, H., and H. Uchida. 1975. Late steps in the assembly of 30s ribosomal proteins in vivo in a spectinomycin-resistant mutant of Escherichia coli. J. Mol. Biol. 96:443–453.google scholarpdf
560Nass, G., and J. Thomale. 1974. Alteration of structure or level of threonyl-tRNA synthetase in borrelidin-resistant mutants of Escherichia coli. FEBS Lett. 39:182–186.google scholarpdf
561Nazos, P. M., M. M. Mayo, T. Z. Su, J. J. Anderson, and D. L. Oxender. 1985. Identification of livG, a membrane-associated component of the branched-chain amino acid transport in Escherichia coli. J. Bacteriol. 163:1196–1202.google scholarpdf
562Nelson, B. W., and R. J. Roantree. 1967. Analysis of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive Salmonella mutants. J. Gen. Microbiol. 48:179–188.google scholarpdf
563Nelson, S. O., B. J. Scholte, and P. W. Postma. 1982. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. J. Bacteriol. 150:604 615.google scholarpdf
564Nelms, J., R. M. Edwards, J. Warwick, and I. Fotheringham. 1992. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition resistant variants of chorismate mutase/prephenate dehydratase. Appl. Environ. Microbiol. 58:2592–2598.google scholarpdf
565Neuhard, J., and K. Thomassen. 1976. Altered deoxyribonucleotide pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene. J. Bacteriol. 126:999–1001.google scholarpdf
566Newell, S. L., and W. J. Brill. 1972. Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation. J. Bacteriol. 111:375–382.google scholarpdf
567Newman, E. B., N. Malik, and C. Walter. 1982. L-Serine degradation in Escherichia coli K-12: directly isolated ssd mutants and their intragenic revertants. J. Bacteriol. 150:710–715.google scholarpdf
568Ng, H., and T. K. Gartner. 1963. Selection of mutants of Escherichia coli constitutive for tryptophanase. J. Bacteriol. 85:245–246.google scholarpdf
569Nikaido, H. 1961. Galactose sensitive mutants of Salmonella. I. Metabolism of galactoside. Biochim. Biophys. Acta 48:460 469.google scholarpdf
570Normark, S., T. Edlund, T. Grundstrom, S. Bergstrom, and H. Wolf-Watz. 1977. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132:912–922.google scholarpdf
571Norwood, W. I., and J. R. Sadler. 1977. Pseudoreversion of lactose operator-constitutive mutants. J. Bacteriol. 130:100–106.google scholarpdf
572Novel, G., and M. Novel. 1973. Mutants d’Escherichia coli K12 affectés pour leur croissance sur méthyl-β-D-glucuronide: localisation du gène de structure de la β-D-glucuronidase (uidA). Mol. Gen. Genet. 120:319–335.google scholarpdf
573Novel, M., and G. Novel. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: constitutive mutants specifically derepressed for uidA expression. J. Bacteriol. 127:406–417.google scholarpdf
574Novel, M., and G. Novel. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting uxu and uidA expression. J. Bacteriol. 127:418–432.google scholarpdf
575Nummer, B. A., S. F. Barefoot, and E. L. Kline. 1992. Effects of the flrA regulatory locus on biosynthesis and excretion of amino acids in Escherichia coli B/r. Biochem. Biophys. Res. Commun. 183:343–349.google scholarpdf
576Nurminen, M., K. Lounatmaa, M. Sarvas, P. H. Makela, and T. Nakae. 1976. Bacteriophage- resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins. J. Bacteriol. 127:941–955.google scholarpdf
577Obukowicz, M. G., N. R. Staten, and G. G. Krivi. 1992. Enhanced heterologous gene expression in novel rpoH mutants of Escherichia coli. Appl. Environ. Microbiol. 58:1511–1523.google scholarpdf
578Odoevskaya, E. R., and S. P. Sineolsii. 1987. Isolation and genetic study of bacterial mutations gpr blocking the replication of certain lambdoid phages. Sov. Genet. 23:432–440.google scholar
579O’Donovan, G. A., G. Edlin, J. A. Fuchs, J. Neuhard, and E. Thomassen. 1971. Deoxycytidine triphosphate deaminase: characterization of an Escherichia coli mutant deficient in the enzyme. J. Bacteriol. 105:666–672.google scholarpdf
580Ohnishi, K., and K. Kiritani. 1978. Glycyl-L-leucine-resistance mutation affecting transport of branched-chain amino acids in Salmonella typhimurium. Jpn. J. Genet. 53:275–283.google scholarpdf
581Ohta, N., P. R. Galsworthy, and A. B. Pardee. 1971. Genetics of sulfate transport by Salmonella typhimurium. J. Bacteriol. 105:1053–1062.google scholarpdf
582Okada, Y., M. Wachi, K. Nagai, and M. Matsuhashi. 1992. Change of the quantity of penicillin-binding proteins and other cytoplasmic and membrane proteins by mutations of the cell shape-determination genes mreB mrec and mreD of Escherichia coli. J. Gen. Appl. Microbiol. 38:157–163.google scholarpdf
583Okuyama, A., M. Yoshikawa, and N. Tanaka. 1974. Alteration of ribosomal protein S2 in kasugamycin resistant mutant derived from Escherichia coli AB312. Biochem. Biophys. Res. Commun. 60:1163–1169.google scholarpdf
584Oliver, D. B., R. J. Cabelli, K. M. Dolan, and G. P. Jarosik. 1990. Azide resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA 87:8227–8231.google scholarpdf
585O’Neill, G. P., S. Thorbjanardottir, U. Michelsen, S. Palsson, D. Söll, and G. Eggertsson. 1991. ∆-Aminolevulinic acid dehydratase deficiency can cause ∆-aminolevulinate auxotrophy in Escherichia coli. J. Bacteriol. 173:94–100.google scholarpdf
586O’Neill, J. B., and M. Freundlich. 1972. Effects of cyclopentane glycine on metabolism in Salmonella typhimurium. J. Bacteriol. 111:510–515.google scholarpdf
587Oppezzo, O. J., B. Avanzati, and D. N. Anton. 1991. Increased susceptibility to beta lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium. Antimicrob. Agents Chemother. 35:1203–1207.google scholarpdf
588Ornellas, E. P., and B. A. D. Stocker. 1974. Relation of lipopolysaccharide character to Pl sensitivity in Salmonella typhimurium. Virology 60:491–502.google scholarpdf
589Orr, E., N. F. Fairweather, I. B. Holland, and R. H. Pritchard. 1979. Isolation and characterization of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol. Gen. Genet. 177:103–112.google scholarpdf
590Orr, J. C., D. W. Bryant, D. R. McCalla, and M. A. Quilliam. 1985. Dinitropyrene resistant Salmonella typhimurium are deficient in an acetyl-CoA acetyltransferase. Chem. Biol. Interact. 54:281–288.google scholarpdf
591Osborn, M. J., S. M. Rosen, L. Rothfield, and B. L. Horecker. 1962. Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella. Proc. Natl. Acad. Sci. USA 48:1831–1838.google scholarpdf
592Osorio, A. V., L. Servin-Gonzalez, M. Rocha, A. A. Covarrubias, and F. Bastarrachea. 1984. cis-dominant, glutamine synthetase constitutive mutations of Escherichia coli independent of activation by the glnG and glnF products. Mol. Gen. Genet. 194:114–123.google scholarpdf
593Ostrowski, J., and D. Hulanicka. 1981. Effect of DNA gyrase inhibitors on gene expression of the cysteine region. Mol. Gen. Genet. 181:363–366.google scholarpdf
594Oxender, D. L. 1972. Membrane transport. Annu. Rev. Biochem. 41:777–814.google scholarpdf
595Oxender, D. L., J. J. Anderson, M. M. Mayo, and S. C. Quay. 1977. Leucine binding protein and regulation of transport in Escherichia coli. J. Supramol. Struct. 6:419–432.google scholarpdf
596Paetz, W., and G. Nass. 1973. Biochemical and immunological characterization of threonyl- tRNA synthetase of two borrelidin resistant mutants of Escherichia coli K12. Eur. J. Biochem. 35:331–337.google scholarpdf
597Pai, C. H. 1974. Biochemical and genetic characterization of dehydrobiotin resistant mutants of Escherichia coli. Mol. Gen. Genet. 134:345–357.google scholarpdf
598Pardee, A. B., E. J. Benz, Jr., D. A. St. Peter, J. N. Krieger, M. Meuth, and H. W. Trieshmann, Jr. 1971. Hyperproduction and purification of nicotinamide deamidase, a microconstitutive enzyme of Escherichia coli. J. Biol. Chem. 246:6792–6796.google scholarpdf
599Pardo, D., and R. Rosset. 1977. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli. Mol. Gen. Genet. 156:267–271.google scholarpdf
600Park, M. H., B. B. Wong, and J. E. Lusk. 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J. Bacteriol. 126:1096–1103.google scholarpdf
601Parker, C. T., A. W. Kloser, C. A. Schnaitman, M. A. Stein, S. Gottesman, and B. W. Gibson. 1992. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J. Bacteriol. 174:2525–2538.google scholarpdf
602Pauli, G., and P. Overath. 1972. ato operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur. J. Biochem. 29:553–562.google scholarpdf
603Payne, J. W., J. S. Morley, P. Armitage, and G. M. Payne. 1984. Transport and hydrolysis of antibacterial peptide analogues in Escherichia coli: backbone-modified aminoxy peptides. J. Gen. Microbiol. 130:2253–2265.google scholarpdf
604Penninckx, M., and D. Gigot. 1979. Synthesis of a peptide form of N-δ-(phosphonoacetyl)-L- ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli L-ornithine carbamoyltransferase. J. Biol. Chem. 254:6392–6395.google scholarpdf
605Pierard, A., and N. Glansdorf. 1972. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Mol. Gen. Genet. 118:235–245.google scholarpdf
606Pierard, A., N. Glansdorf, D. Gigot, M. Crabeel, P. Halleux, and L. Thiry. 1976. Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J. Bacteriol. 127:291–301.google scholarpdf
607Pinn, P. A., K. J. Towner, and F. W. O’Grady. 1983. Genetic analysis of chromosomal resistance to trimethoprim derived from clinical isolates of Escherichia coli. J. Gen. Microbiol. 128:85–92.google scholarpdf
608Plate, C. A., and J. L. Suit. 1981. The eup genetic locus of Escherichia coli and its role in proton solute symport. J. Biol. Chem. 256:12974–12980.google scholarpdf
609Platz, A., and B.-M. Sjoberg. 1980. Construction and characterization of hybrid plasmids containing the Escherichia coli nrd region. J. Bacteriol. 143:561–568.google scholarpdf
610Pledger, W. J., and H. E. Umbarger. 1973. Isoleucine and valine metabolism in Escherichia coli. XXI. Mutations affecting derepression and valine resistance. J. Bacteriol. 114:183–194.google scholarpdf
611Popkin, P. S., and W. K. Maas. 1980. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J. Bacteriol. 141:485–492.google scholarpdf
612Portalier, R., J. Robert-Baudouy, and F. Stoeber. 1980. Regulation of Escherichia coli K-12 hexuronate system genes: exu regulon. J. Bacteriol. 143:1095–1107.google scholarpdf
613Postma, P. W. 1977. Galactose transport in Salmonella typhimurium. J. Bacteriol. 129:630–639.google scholarpdf
614Postma, P. W., and J. W. Lengeler. 1985. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49:232–269.google scholarpdf
615Pouyssegur, J. M., and F. R. Stoeber. 1972. Rameau degradatif commun des hexuronates chez Escherichia coli K12. Mécanisme d’induction dex enzymes assurant le métabolisme du 2-céto-3- desoxy-gluconate. Eur. J. Biochem. 30:479–494.google scholarpdf
616Prasad, I., B. Young, and S. Schaefler. 1973. Genetic determination of the constitutive biosynthesis of phospho-β-glucosidase A in Escherichia coli K-12. J. Bacteriol. 114:909–915.google scholarpdf
617Pritchard, R. H., and S. I. Ahmad. 1971. Fluorouracil and the isolation of mutants lacking uridine phosphorylase in E. coli: location of the gene. Mol. Gen. Genet. 111:84–88.google scholarpdf
618Prody, C. A., and J. B. Nellands. 1984. Genetic and biochemical characterization of the Escherichia coli K-12 fhuB mutation. J. Bacteriol. 157:874–880.google scholarpdf
619Pueyo, C., and J. Lopez-Barea. 1979. The L-arabinose-resistance test with Salmonella typhimurium strain SV3 selects forward mutations at several ara genes. Mutat. Res. 64:249–258.google scholarpdf
620Pugsley, A. P. 1985. Escherichia coli K12 strains for use in the identification and characterization of colicins. J. Gen. Microbiol. 131:369–376.google scholarpdf
621Pugsley, A. P., D. R. Lee, and C. A. Schnaitman. 1980. Genes affecting the major outer membrane proteins of Escherichia coli K12: mutations at nmpA and nmpB. Mol. Gen. Genet. 677:681–690.google scholarpdf
622Pugsley, A. P., F. Moreno and V. de Lorenzo. 1986. Microcin-E492-insensitive mutants of Escherichia coli. J. Gen. Microbiol. 132:3253–3260.google scholarpdf
623Pugsley, A. P., and P. Reeves. 1976. Iron uptake in colicin B-resistant mutants of Escherichia coli K-12. J. Bacteriol. 126:1052–1062.google scholarpdf
624Pugsley, A. P., and P. Reeves. 1976. Characterization of group B colicin-resistant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J. Bacteriol. 127:218–228.google scholarpdf
625Pugsley, A. P., and C. A. Schnaitman. 1978. Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. J. Bacteriol. 133:1181–1189.google scholarpdf
626Pugsley, A. P., and C. A. Schnaitman. 1978. Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. J. Bacteriol. 135:1118–1129.google scholarpdf
627Puyo, M. F., P. Calsou, and B. Salles. 1992. UV resistance of E. coli K12 deficient in cAMP/CRP regulation. Mutat. Res. 282:247–252.google scholarpdf
628Rahav-Manor, O., O. Carmel, R. Karpel, D. Taglicht, G. Glaser, S. Schuldiner, and E. Padan. 1992. NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J. Biol. Chem. 267:10433– 10438.google scholarpdf
629Rainwater, S., and P. M. Silverman. 1990. The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene. J. Bacteriol. 172:2456–2461.google scholarpdf
630Rakonjac, J., M. Milic, D. Ajdic-Predic, D. Santos, R. Ivanisevic, and D. J. Savic. 1992. A new genetic locus that affects the response of Escherichia coli K12 to novobiocin. Mol. Microbiol. 6:1547–1553.google scholarpdf
631Rakonjac, J., M. Milic, and D. J. Savic. 1991. cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol. Gen. Genet. 228:307–311.google scholarpdf
632Ramabhadran, T. V. 1976. Method for the isolation of Escherichia coli relaxed mutants, utilizing near-ultraviolet irradiation. J. Bacteriol. 127:1587–1589.google scholarpdf
633Ramakrishnan, T., and E. A. Adelberg. 1965. Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bacteriol. 89:654–660.google scholarpdf
634Ramakrishnan, V., and S. W. White. 1992. The structure of ribosomal protein S5 reveals sites of interaction with 16s RRNA. Nature 358:768–771.google scholarpdf
635Rancourt, D. E., J. T. Stephenson, G. A. Vickell, and J. M. Wood. 1984. Proline excretion by Escherichia coli K12. Biotechnol. Bioeng. 26:74–80.google scholarpdf
636Raney, M. E., and R. W. Elliott. 1978. The biochemical and genetic basis for high frequency thiomethylgalactoside resistance in lambda-lambda-dg lysogens of Escherichia coli. J. Gen. Microbiol. 104:287–298.google scholarpdf
637Ray, J. M., C. Yanofsky, and R. Bauerle. 1988. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J. Bacteriol. 170:5500–5506.google scholarpdf
638Reeve, E. C. R. 1968. Genetic analysis of some mutations causing resistance to tetracycline in Escherichia coli K12. Genet. Res. 11:303–309.google scholarpdf
639Reiner, A. M. 1977. Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J. Bacteriol. 132:166–173.google scholarpdf
640Reynolds, A. E., J. Felton, and A. Wright. 1981. Insertion of DNA activates the cryptic bgl operon in E. coli K-12. Nature 293:625–629.google scholarpdf
641Rick, P. D., and M. J. Osborn. 1972. Isolation of a mutant of Salmonella typhimurium dependent on D-arabinose-5-P for growth and synthesis of 3-deoxy-D-mannooctulosonate (ketodeoxyoctonate). Proc. Natl. Acad. Sci. USA 69:3756–3760.google scholarpdf
642Ried, G., I. Hindennach, and U. Henning. 1990. Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J. Bacteriol. 172:6048–6053.google scholarpdf
643Riley, M. 1993. Functions of the gene products of Escherichia coli. Microbiol. Rev. 57:862–952.google scholarpdf
644Roa, M. 1979. Interaction of bacteriophage K10 with its receptor, the lamB protein of Escherichia coli. J. Bacteriol. 140:680–686.google scholarpdf
645Robbins, A. R. 1975. Regulation of the Escherichia coli methylgalactoside transport system by gene mglD. J. Bacteriol. 123:69–74.google scholarpdf
646Robbins, J. C., and D. L Oxender. 1973. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J. Bacteriol. 116:12–18.google scholarpdf
647Roberton, A. M., P. A. Sullivan, M. C. Jones-Mortimer, and H. L. Kornberg. 1980. Two genes affecting glucarate utilization in Escherichia coli K12. J. Gen. Microbiol. 117:377–382.google scholarpdf
648Roberts, L. M., and E. C. R. Reeve. 1970. Two mutations giving low-level streptomycin resistance in Escherichia coli K12. Genet. Res. 16:359–365.google scholarpdf
649Robinson, C. L., and J. H. Jackson. 1982. New acetohydroxy acid synthetase activity from mutational activation of a cryptic gene in Escherichia coli K-12. Mol. Gen. Genet. 186:240–246.google scholarpdf
650Rodriguez, S. B., and J. L. Ingraham. 1983. Location on the Salmonella typhimurium chromosome of the gene encoding nucleoside diphosphokinase (ndk). J. Bacteriol. 153:1101–1103.google scholarpdf
651Roeder, N., and R. L Somerville. 1979. Cloning the trpR gene. Mol. Gen. Genet. 176:361–368.google scholarpdf
652Roehl, R. A., and R. T. Vinopal. 1980. Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12. J. Bacteriol. 142:120–130.google scholarpdf
653Rolfe, B., and K. Onodera. 1971. Demonstration of missing membrane proteins in a colicin- tolerant mutant of Escherichia. Biochem. Biophys. Res. Commun. 44:767–773.google scholarpdf
654Rood, J. I., A. J. Laird, and J. W. Williams. 1980. Cloning of the Escherichia coli K12 dihydrofolate reductase EC-1.5.1.3 gene following phage Mu mediated transposition. Gene 8:255– 266.google scholarpdf
655Rosen, B. P. 1973. Basic amino acid transport in Escherichia coli: properties of canavanine- resistant mutants. J. Bacteriol. 116:627–635.google scholarpdf
656Rosen, S. M., L. D. Zeleznick, D. Fraenkel, I. M. Wiener, M. J. Osborn, and B. L. Horecker. 1965. Characterization of the cell wall lipopolysaccharide of a mutant of Salmonella typhimurium lacking phosphomannose isomerase. Biochem. Z. 342:375–386.google scholarpdf
657Roth, J. R., and B. N. Ames. 1966. Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having altered histidyl-tRNA synthetase. J. Mol. Biol. 22:325–334.google scholarpdf
658Roth, J. R., D. N. Anton, and P. E. Hartman. 1966. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J. Mol. Biol. 22:305–323.google scholarpdf
659Rowbury, R. J., M. Goodson, and A. D. Wallace. 1992. The phoE porin and transmission of the chemical stimulus for induction of acid resistance acid habituation in Escherichia coli. J. Appl. Bacteriol. 72:233–243.google scholarpdf
660Rudd, K. E., and R. Menzel. 1987. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc. Natl. Acad. Sci. USA 84:517–521.google scholarpdf
661Rudd, K. E., W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and S. G. Satterfield. 1991. Mapping sequenced E. coli genes by computer: software, strategies and examples. Nucleic Acids Res. 19:637–647.google scholarpdf
662Russell, R. R. B., and A. J. Pittard. 1971. Mutants of Escherichia coli unable to make protein at 42°C. J. Bacteriol. 108:790–798.google scholarpdf
663Ryals, J., R.-Y. Hsu, M. N. Lipsett, and H. Bremer. 1982. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J. Bacteriol. 151:899–904.google scholarpdf
664Saedler, H., A. Gullon, L. Fiethen, and P. Starlinger. 1968. Negative control of the galactose operon in E. coli. Mol. Gen. Genet. 102:79–88.google scholarpdf
665Saier, M. H., Jr., H. Straud, L. S. Massman, J. J. Judice, M. J. Newman, and B. U. Feucht. 1978. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol. 133:1358–1367.google scholarpdf
666Saito, H., and C. C. Richardson. 1981. Genetic analysis of gene 1.2 of bacteriophage T7: isolation of a mutant of Escherichia coli unable to support the growth of T7 gene 1.2 mutants. Virology 37:343–351.google scholarpdf
667Saito, H., and H. Uchida. 1977. Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J. Mol. Biol. 113:1–25.google scholarpdf
668Sakka, K., T. Watanabe, R. Beers, and H. C. Wu. 1987. Isolation and characterization of a new globomycin-resistant dnaE mutant of Escherichia coli. J. Bacteriol. 169:3400–3408.google scholarpdf
669Salanitro, J. P., and W. S. Wegener. 1971. Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system. J. Bacteriol. 18:893–900.google scholarpdf
670Samsonov, V. V., E. R. Odoevskaia, and S. P. Sineokii. 1992. Cloning and complementation analysis of the Escherichia coli gpr locus, influencing DNA replication of certain lambdoid phages. Genetika 28:39–45.google scholarpdf
671Sanchez-Anzaldo, F. J., and F. Bastarrachea. 1974. Genetic characterization of streptomycin- resistant and dependent mutants of Escherichia coli K-12. Mol. Gen. Genet. 130:47–64.google scholarpdf
672Sanchez-Anzaldo, F. J., R. Gomez, and F. Bastarrachea. 1979. Paromoycin resistant mutants of Escherichia coli K12. I. Cross-resistance to streptomycin and synergism of the mixture of both antibiotics. Rev. Latinoam. Microbiol. 21:121–128.google scholarpdf
673Sanderson, K. E., and J. R. Roth. 1983. Linkage map of Salmonella typhimurium, edition VI. Microbiol. Rev. 47:410–453.google scholarpdf
674Sanderson, K. E., and J. R. Roth. 1988. Linkage map of Salmonella typhimurium, edition VII. Microbiol. Rev. 52:485–532.google scholarpdf
675Sanderson, K. E., and B. A. D. Stocker. 1981. Gene rfaH, which affects lipopolysaccharide core structure in Salmonella typhimurium, is required also for expression of F-factor functions. J. Bacteriol. 146:535–541.google scholarpdf
676Sanderson, K. E., J. Van Wyngaarten, O. Luderitz, and B. A. D. Stocker. 1974. Rough mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide core. Can. J. Microbiol. 20:1127–1134.google scholarpdf
677Santangelo, J. D., D. T. Jones, and D. R. Woods. 1991. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes. J. Bacteriol. 173:1088–1095.google scholarpdf
678Sarrhy, A., S. Michaels, and J. Beckwith. 1981. Deletion map of the Escherichia coli structural gene for alkaline phosphatase, phoA. J. Bacteriol. 145:288–292.google scholarpdf
679Sasarman, A., P. Chartrand, M. Lavoie, D. Tardif, R. Proschek, and C. Lapointe. 1979. Mapping of a new hem gene in Escherichia coli K12. J. Gen. Microbiol. 113:297–303.google scholarpdf
680Sasarman, A., P. Chartrand, R. Proschek, M. Desrochers, D. Tardif, and C. Lapointe. 1975. Uroporphyrin-accumulating mutant of Escherichia coli K-12. J. Bacteriol. 124:1205–1212.google scholarpdf
681Sasarman, A., and M. Desrochers. 1976. Uroporphyrinogen III cosynthase-deficient mutant of Salmonella typhimurium LT2. J. Bacteriol. 128:717–721.google scholarpdf
682Sasarman, A., M. Desrochers, S. Sonea, K. E. Sanderson, and M. Surdeanu. 1976. Porphobilogen-accumulating mutants of Salmonella typhimurium LT2. J. Gen. Microbiol. 94:359– 366.google scholarpdf
683Sasarman, A., K. E. Sanderson, M. Surdeanu, and S. Sonea. 1970. Hemin-deficient mutants of Salmonella typhimurium. J. Bacteriol. 102:531–536.google scholarpdf
684Sastry, S. S., and R. Jayaraman. 1984. Nitrofurantoin-resistant mutants of Escherichia coli: isolation and mapping. Mol. Gen. Genet. 196:379–380.google scholarpdf
685Satre, M., C. Klein, and P. V. Vignais. 1978. Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin. J. Bacteriol. 134:17–23.google scholarpdf
686Schaefler, S. 1967. Inducible system for the utilization of β-glucosides in Escherichia coli. I. Active transport and utilization of β-glucosides. J. Bacteriol. 93:254–263.google scholarpdf
687Schellenberg, G. D., and C. E. Furlong. 1977. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J. Biol. Chem. 252:9055–9064.google scholarpdf
688Schleif, R. 1969. Isolation and characterization of a streptolydigin resistant RNA polymerase. Nature 223:1068–1069.google scholarpdf
689Schwartz, J. H., W. K. Mass, and E. J. Simon. 1959. An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to L-canavanine and D-serine. Biochim. Biophys. Acta 32:582–583.google scholarpdf
690Schwarz, T. F. R., S. M. Yeats, and P. Connolly. 1981. Altered transcriptional termination in a rifampicin-resistant mutant of Escherichia coli which inhibits the growth of bacteriophage T7. Mol. Gen. Genet. 183:181–186.google scholarpdf
691Schweizer, H., M. Argast, and W. Boos. 1982. Characteristics of a binding protein-dependent transport system for sn-glycerol 3-phosphate in Escherichia coli that is part of the pho regulon. J. Bacteriol. 150:1154–1163.google scholarpdf
692Schweizer, H., T. Grussenmeyer, and W. Boos. 1982. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol 3-phosphate transport system of Escherichia coli. J. Bacteriol. 150:1164–1171.google scholarpdf
693Sedgwick, B., and P. Robins. 1980. Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: mutants deficient in thiols and mutants constitutive for the adaptive response. Mol. Gen. Genet. 180:85–90.google scholarpdf
694Servin-Gonzalez, L., M. Ortiz, A. Gonzalez, and F. Bastarrachea. 1987. glnA mutations conferring resistance to methylammonium in Escherichia coli K12. J. Gen. Microbiol. 133:1631– 1639.google scholarpdf
695Shakulov, R. S., V. A. Livshits, G. G. Zaigraeva, L. F. Lideman, and T. T. D. Mukhamed. 1978. Partial suppression of the action of the gene relA in cells of fusr mutants of Escherichia coli K12. Sov. Genet. 14:632–640.google scholar
696Shaw, L, F. Grau, H. R. Kaback, J. S. Hong, and C. Walsh. 1975. Vinylglycolate resistance in Escherichia coli. J. Bacteriol. 121:1047–1055.google scholarpdf
697Sheldon, R., and S. Brenner. 1976. Regulatory mutants of dihydrofolate reductase in Escherichia coli K12. Mol. Gen. Genet. 147:91–97.google scholarpdf
698Sheppard, D. E. 1964. Mutants of Salmonella typhimurium resistant to feedback inhibition by L- histidine. Genetics 50:611–623.google scholarpdf
699Shifrin, S., B. N. Ames, and G. F.-L. Ames. 1966. Effect of the α-hydrazino analogue of histidine on histidine transport and arginine biosynthesis. J. Biol. Chem. 241:3424–3429.google scholarpdf
700Shimmin, L. C., D. Vanderwel, R. E. Harkness, B. R. Currie, C. A. Galloway, and E. E. Ishiguro. 1984. Temperature-sensitive beta-lactam-tolerant mutants of Escherichia coli. J. Gen.Microbiol. 122:351–354.google scholarpdf
701Shive, W., and J. Macow. 1946. Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. I. Some transformations involving aspartic acid. J. Biol. Chem. 162:451–462.google scholarpdf
702Siden, I., and H. G. Boman. 1983. Escherichia coli mutants with an altered sensitivity to cecropin D. J. Bacteriol. 154:170–176.google scholarpdf
703Siegel, E. C., and V. Bryson. 1967. Mutator gene of Escherichia coli B. J. Bacteriol. 94:38–47.google scholarpdf
704Sigmund, C. D., M. Ettayebi, and E. A. Morgan. 1984. Antibiotic resistance mutations in 16s and 23s ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12:4653–4663.google scholarpdf
705Signer, C. E., G. R. Smith, R. Cortese, and B. N. Ames. 1972. Mutant tRNAhis ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238:72–74.google scholarpdf
706Silbert, D. F., G. R. Fink, and B. N. Ames. 1966. Histidine regulatory mutants in Salmonella typhimurium. III. A class of regulatory mutants deficient in tRNA for histidine. J. Mol. Biol. 22:335– 347.google scholarpdf
707Silhavy, T. J., I. Hartig-Beecken, and W. Boos. 1976. Periplasmic protein related to the sn- glycerol 3-phosphate transport system of Escherichia coli. J. Bacteriol. 126:951–958.google scholarpdf
708Silver, S., P. Johnseine, E. Whitney, and D. Clark. 1972. Manganese-resistant mutants of Escherichia coli: physiological and genetic studies. J. Bacteriol. 110:186–195.google scholarpdf
709Silverman, M., and M. Simon. 1973. Genetic analysis of flagellar mutants in Escherichia coli. J. Bacteriol. 113:105–113.google scholarpdf
710Silverman, M., and M. I. Simon. 1977. Bacterial flagella. Annu. Rev. Microbiol. 31:397–419.google scholarpdf
711Silverman, P., K. Nat, J. McEwen, and R. Birchman. 1980. Selection of Escherichia coli K-12 mutants that prevent expression of F-plasmid functions. J. Bacteriol. 143:1519–1523.google scholarpdf
712Silverstone, A. E., M. Goman, and J. G. Scaife. 1972. ALT: a new factor involved in the synthesis of RNA by Escherichia coli. Mol. Gen. Genet. 118:223–234.google scholarpdf
713Simons, R W., P. A. Egan, H. T. Chute, and W. D. Nunn. 1980. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in fadR. J. Bacteriol. 142:621–632.google scholarpdf
714Sivasubramanian, N., and R. Jayaraman. 1980. Mapping of two transcription mutations (tlnI and tlnII) conferring thiolutin resistance, adjacent to dnaZ and rho in Escherichia coli. Mol. Gen. Genet. 180:609–615.google scholarpdf
715Slater, A. C., M. C. Jones-Mortimer, and H. L Kornberg. 1981. L-sorbose phosphorylation in Escherichia coli K-12. Biochim. Biophys. Acta 646:365–367.google scholarpdf
716Slayman, C. W. 1973. The genetic control of membrane transport. Curr. Top. Membr. Transp. 4:1–174.google scholarpdf
717Sledziewska, E., and D. Hulanicka. 1978. Method of isolation of cysteine constitutive mutants of the cysteine regulon in Salmonella typhimurium. Mol. Gen. Genet. 165:289–293.google scholarpdf
718Smith, D. R., and J. M. Calvo. 1979. Regulation of dihydrofolate reductase EC-1.5.1.3 synthesis in Escherichia coli. Mol. Gen. Genet. 175:31–38.google scholarpdf
719Smith, D. R., J. I. Rood, P. I. Bird, M. K, Sneddon, J. M. Calvo, and J. F. Morrison. 1982. Amplification and modification of dihydrofolate reductase EC-1.5.1.3 in Escherichia coli nucleotide sequence of fol genes from mutationally altered plasmids. J. Biol. Chem. 257:9043–9048.google scholarpdf
720Smith, J. M., F. J. Smith, and H. E. Umbarger. 1979. Mutations affecting the formation of acetohydroxyacid synthase II in Escherichia coli K12. Mol. Gen. Genet. 169:299–314.google scholarpdf
721Smith, T. F., and J. R. Sadler. 1971. The nature of lactose operator constitutive mutations. J. Mol. Biol. 59:273–305.google scholarpdf
722Solomon, E., and E. C. C. Lin. 1972. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. J. Bacteriol. 111:566–574.google scholarpdf
723Somers, J. M., and W. W. Kay. 1983. Genetic fine structure of the tricarboxylate transport (tct) locus of Salmonella typhimurium. Mol. Gen. Genet. 190:20–26.google scholarpdf
724Somers, J. M., G. D. Sweet, and W. W. Kay. 1981. Fluorocitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol. Gen. Genet. 181:338–345.google scholarpdf
725Sparling, P. F., and E. Blackman. 1973. Mutation to erythromycin dependence in Escherichia coli K-12. J. Bacteriol. 116:74–83.google scholarpdf
726Sparling, P. F., Y. Ikeya, and D. Elliot. 1973. Two genetic loci for resistance to kasugamycin in Escherichia coli. J. Bacteriol. 113:704–710.google scholarpdf
727Sprague, G. F., Jr., R. M. Bell, and J. E. Cronan, Jr. 1975. A mutant of Escherichia coli auxotrophic for organic phosphates: evidence for two defects in inorganic phosphate transport. Mol. Gen. Genet. 143:71–77.google scholarpdf
728Springer, S. E., and R. E. Huber. 1973. Sulfate and selenate uptake and transport in wild and in two selenate-tolerant strains of Escherichia coli K-12. Arch. Biochem. Biophys. 156:595–603.google scholarpdf
729Sprinson, D. B., E. G. Gollub, R. C. Hu, and K.-P. Liu. 1976. Regulation of tyrosine and phenylalanine biosynthesis in Salmonella. Acta Microbiol. Acad. Sci. Hung. 23:167–170.google scholar
730Stacey, K. A., and E. Simson. 1965. Improved method for the isolation of thymine-requiring mutants of Escherichia coli. J. Bacteriol. 90:554 555.google scholarpdf
731Stalker, D. M., W. R. Hiatt, and L. Comai. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260:4724–4728.google scholarpdf
732Stalmach, M. E., S. Grothe, and J. M. Wood. 1983. Two proline porters in Escherichia coli K-12. J. Bacteriol. 156:481–486.google scholarpdf
733Staskawicz, B. J., and N. J. Panopoulos. 1980. Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease. J. Bacteriol. 142:474–479.google scholarpdf
734Staudenbauer, W. L. 1976. Replication of Escherichia coli DNA in vitro: inhibition by oxolinic acid. Eur. J. Biochem. 62:491–497.google scholarpdf
735Stauffer, G. V., and J. E. Brenchley. 1977. Influence of methionine biosynthesis on serine transhydroxymethylase (EC 2.1.2.1) regulation in Salmonella typhimurium LT2. J. Bacteriol. 129:740–749.google scholarpdf
736Steffes, C., J. Ellis, J. Wu, and B. P. Rosen. 1992. The lysP gene encodes the lysine-specific permease. J. Bacteriol. 174:3242–3249.google scholarpdf
737Stern, J. R., and R. W. O’Brien. 1969. Oxidation of D-malic and β-alkyl malic acids by wild- type and mutant strains of Salmonella typhimurium and by Aerobacter aerogenes. J. Bacteriol. 98:147–151.google scholarpdf
738Stevens, F. J., and T. T. Wu. 1976. Growth on D-lyxose of a mutant strain of Escherichia coli K12 using a novel isomerase and enzymes related to D-xylose metabolism. J. Gen. Microbiol. 97:257–265.google scholarpdf
739Stewart, V., and C. H. MacGregor. 1982. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J. Bacteriol. 151:788–799.google scholarpdf
740Stitt, B. L., H. R. Revel, I. Lielausis, and W. B. Wood. 1980. Role of the host cell in bacteriophage T4 development. II. Characterization of host mutants that have pleiotropic effects on T4 growth. J. Virol. 35:775–789.google scholarpdf
741Stocker, B. A. D., M. Nurminen, and P. H. Makela. 1979. Mutants defective in the 33K outer membrane protein of Salmonella typhimurium. J. Bacteriol. 139:376–383.google scholarpdf
742Stoeber, F., A. Lagarde, G. Nemoz, G. Novel, M. Novel, R Portalier, J. Pouyssegur, and J. Robert-Baudouy. 1974. Le métabolisme des hexuronides et des hexuronates chez Escherichia coli K12: aspects physiologiques et génétiques de sa régulation. Biochimie 56:199–213.google scholarpdf
743Stouthamer, A. H. 1969. A genetical and biochemical study of chlorate-resistant mutants of Salmonella typhimurium. Antonie van Leeuwenhoek J. Microbiol. Serol. 35:505–521.google scholarpdf
744Stouthamer, A. H., and C. W. Bettenhaussen. 1970. Mapping a gene causing resistance to chlorate in Salmonella typhimurium. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:555–565.google scholarpdf
745Straus, D. S., and G. R. Hoffman. 1975. Selection for a large genetic duplication in Salmonella typhimurium. Genetics 80:227–237.google scholarpdf
746Stuttard, C. 1972. Location of trpR mutations in the serB-thr region of Salmonella typhimurium. J. Bacteriol. 111:368–374.google scholarpdf
747Sullivan, M. A., and R. M. Bock. 1985. Isolation and characterization of antisuppressor mutations in Escherichia coli. J. Bacteriol. 161:377–384.google scholarpdf
748Sullivan, M. A., J. F. Cannon, F. H. Webb, and R. M. Bock. 1985. Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J. Bacteriol. 161:368–376.google scholarpdf
749Summers, W. C., and P. Raskin. 1993. A method for selection of mutations at the tdk locus in Escherichia coli. J. Bacteriol. 175:6049–6051.google scholarpdf
750Sun, T.-P., and R. E. Webster. 1986. fii, a bacterial locus required for filamentous phage infection, and its relation to colicin-tolerant tolA and tolB. J. Bacteriol. 165:107–115.google scholarpdf
751Sun, T.-P., and R. E. Webster. 1987. Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J. Bacteriol. 169:2667–2674.google scholarpdf
752Sundararajan, T. A. 1963. Interference with glycerokinase induction in mutants of E. coli accumulating gal-1-P. Proc. Natl. Acad. Sci. USA 50:463–469.google scholarpdf
753Sunshine, M., M. Feiss, J. Stuart, and J. Yochem. 1977. A new host gene (groPC) necessary for lambda DNA replication. Mol. Gen. Genet. 151:27–34.google scholarpdf
754Sunshine, M. G., and B. Sauer. 1975. A bacterial mutation blocking P2 phage late gene expression. Proc. Natl. Acad. Sci. USA 72:2770–2774.google scholarpdf
755Sutton, A., T. Newman, M. Francis, and M. Freundlich. 1981. Valine-resistant Escherichia coli K-12 strains with mutations in the ilvB operon. J. Bacteriol. 148:998–1001.google scholarpdf
756Swedberg, C., S. Castensson, and O. Skold. 1979. Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog. J. Bacteriol. 137:129–136.google scholarpdf
757Szentirmai, A., M. Szentirmai, and H. E. Umbarger. 1968. Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J. Bacteriol. 95:1672–1679.google scholarpdf
758Takahashi, H. 1978. Genetic and physiological characterization of Escherichia coli K12 mutants (tabC) which induce the abortive infection of bacteriophage T4. Virology 87:256–265.google scholarpdf
759Tamaki, S., H. Matsuzawa, and M. Matsuhashi. 1980. Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J. Bacteriol. 141:52–57.google scholarpdf
760Tamaki, S., T. Sato, and M. Matsuhashi. 1971. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J. Bacteriol. 105:968–975.google scholarpdf
761Tanaka, N., G. Kawano, and T. Kinoshita. 1971. Chromosomal location of a fusidic acid resistant marker in Escherichia coli. Biochem. Biophys. Res. Commun. 42:564–567.google scholarpdf
762Tang, C.-T., R. Engel, and B. E. Tropp. 1977. L-Glyceraldehyde 3-phosphate, a bactericidal agent. Antimicrob. Agents Chemother. 11:147–153.google scholarpdf
763Tapio, S., and L. A. Isaksson. 1990. Antisuppression by mutations in elongation factor Tu. Eur. J. Biochem. 188:339–346.google scholarpdf
764Thakar, J. H., and G. P. Kalle. 1968. Defective guanine uptake in an 8-azaguanine-resistant mutant of Salmonella typhimurium. J. Bacteriol. 95:458–464.google scholarpdf
765Thèze, J., D. Margarita, G. N. Cohen, F. Borne, and J. C. Patte. 1974. Mapping of the structural genes of the three aspartokinases and the two homoserine dehydrogenases of Escherichia coli K-12. J. Bacteriol. 117:133–143.google scholarpdf
766Thirion, J. P., and M. Hofnung. 1982. On some genetic aspects of phage λ resistance in E. coli K12. Genetics 71:207–216.google scholarpdf
767Thomas, G., and A. Favre. 1977. Genetic mapping of a mutant exhibiting no near ultraviolet induced growth delay and lacking 4-thiouridine in its tRNA. C. R. Acad. Sci. 284:2285–2288.google scholarpdf
768Thorbjarnardottir, S. H., R. A. Magnusdottir, and C. Eggertsson. 1978. Mutations determining generalized resistance to aminoglycoside antibiotics in Escherichia coli. Mol. Gen. Genet. 161:89–98.google scholarpdf
769Thorne, C. M., and L. M. Corwin. 1975. Mutations affecting aromatic amino acid transport in Escherichia coli and Salmonella typhimurium. J. Gen. Microbiol. 90:203–216.google scholarpdf
770Tomas, J. M., and W. W. Kay. 1986. Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob. Agents Chemother. 30:127–131.google scholarpdf
771Tommassen, J., and B. Lugtenberg. 1981. Localization of phoE, the structural gene for outer membrane protein E in Escherichia coli K-12. J. Bacteriol. 147:118–123.google scholarpdf
772Toone, W. M., K. E. Rudd, and J. D. Friesen. 1992. Mutations causing aminotriazole resistance and temperature sensitivity reside in gyrB, which encodes the β subunit of DNA gyrase. J. Bacteriol. 174:5479–5481.google scholarpdf
773Torriani, A., and F. Rothman. 1961. Mutants of Escherichia coli constitutive for alkaline phosphatase. J. Bacteriol. 81:835–836.google scholarpdf
774Tosa, T., and L. I. Pizer. 1971. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J. Bacteriol. 106:972–982.google scholarpdf
775Tristram, H., and S. Neale. 1968. The activity and specificity of the proline permease in wild- type and analogue-resistant strains of Escherichia coli. J. Gen. Microbiol. 50:121–137.google scholarpdf
776Trun, N. J., and S. Gottesman. 1990. On the bacterial cell cycle: Escherichia coli mutants with altered ploidy. Genes Dev. 4:2036–2047.google scholarpdf
777Trun, N. J., and S. Gottesman. 1991. Characterization of Escherichia coli mutants with altered ploidy. Res. Microbiol. 142:195–200.google scholarpdf
778Tsay, J.-T., C. O. Rock, and S. Jackowski. 1992. Overproduction of beta ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J. Bacteriol. 174:508– 513.google scholarpdf
779Udaka, S., and H. S. Moyed. 1963. Inhibition of parental and mutant xanthosine 5′-phosphate aminases by psicofuranine. J. Biol. Chem. 238:2797–2803.google scholarpdf
780Umbarger, H. E. 1969. Regulation of the biosynthesis of the branched-chain amino acids. Curr. Top. Cell. Regul. 1:57–76.google scholarpdf
781Umbarger, H. E. 1971. Metabolite analogs as genetic and biochemical probes. Adv. Genet. 16:119–140.google scholarpdf
782Umbarger, H. E. 1987. Biosynthesis of the branched-chain amino acids. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.google scholarpdf
783Uzan, M., and A. Danchin. 1976. A rapid test for the relA mutation in E. coli. Biochem. Biophys. Res. Commun. 69:751–758.google scholarpdf
784Uzan, M., and A. Danchin. 1978. Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA mutants. Mol. Gen. Genet. 165:21–30.google scholarpdf
785Vaara, M. 1981. Increased outer membrane resistance to ethylenediamine-tetraacetate and cations in novel lipid A mutants. J. Bacteriol. 148: 426–434.google scholarpdf
786Vaara, M., and T. Vaara. 1981. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19:578–583.google scholarpdf
787Vaara, M., T. Vaara, M. Jensen, I. Helander, M. Nurminen, E. T. Rietschel, and P. H. Makela. 1981. Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett. 129:145–149.google scholarpdf
788Vaara, M., T. Vaara, and M. Sarvas. 1979. Decreased binding of polymyxin by polymyxin- resistant mutants of Salmonella typhimurium. J. Bacteriol. 139:664–667.google scholarpdf
789Vallari, D. S., and S. Jackowski. 1988. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J. Bacteriol. 170:3961–3966.google scholarpdf
790Vallari, D. S., and C. O. Rock. 1987. Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli. J. Bacteriol. 169:5795–5800.google scholarpdf
791Van Alphen, L., B. Lugtenberg, R. Van Boxtel, A.-M. Hack, C. Verhoef, and L. Havekes. 1979. meoA is the structural gene for outer membrane protein C of Escherichia coli K12. Mol. Gen. Genet. 169:147–156.google scholarpdf
792Van Alphen, W., B. Lugtenberg, and W. Berendsen. 1976. Heptose-deficient mutants of Escherichia coli K12 deficient in up to three major outer membrane proteins. Mol. Gen. Genet.147:263–269.google scholarpdf
793Van Buul, C. P. J. J., and P. H. Van Knippenberg. 1985. Nucleotide sequence of the ksgA gene of Escherichia coli—comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA. Gene 38:65–72.google scholarpdf
794Van de Klundert, J. A. M., E. Den Turk, A. H. Borman, P. H. Van der Meide, and L. Bosch. 1977. Isolation and characterization of a mocimycin resistant mutant of Escherichia coli with an altered elongation factor EF-Tu. FEBS Lett. 81:303–307.google scholarpdf
795Van de Klundert, J. A. M., P. H. Van der Meide, P. Van de Putte, and L. Bosch. 1978. Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Proc. Natl. Acad. Sci. USA 75:4470–4473.google scholarpdf
796Van Dyk, T. K., and R. A. LaRossa. 1986. Sensitivity of a Salmonella typhimurium aspC mutant to sulfometuron methyl, a potent inhibitor of acetolactate synthase II. J. Bacteriol. 165:386–392.google scholarpdf
797Van Dyk, T. K., and R. A. LaRossa. 1987. Involvement of ack-pta operon products in α- ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 207:435–440.google scholarpdf
798Vasiljevic, B., and L. Topisirovic. 1987. Properties of ribosomes from neamine-dependent (NeaD) mutants of Escherichia coli. Period. Biol. 89:89–93.google scholarpdf
799Venables, W. A., and J. R. Guest. 1968. Transduction of nitrate reductase loci of Escherichia coli by phages Pl and λ. Mol. Gen. Genet. 103:127–140.google scholarpdf
800Venkateswaran, P. S., and H. C. Wu. 1972. Isolation and characterization of a phosphonomycin- resistant mutant of Escherichia coli K-12. J. Bacteriol. 110:935–944.google scholarpdf
801Verhof, C., B. Lugtenberg, R. van Boxtel, P. de Craaff, and H. Verheij. 1979. Genetics and biochemistry of the peptidoglycan-associated proteins b and c of Escherichia coli K12. Mol. Gen. Genet. 169:137–146.google scholarpdf
802Vinella, D., R. D’Ari, and P. Bouloc. 1992. Penicillin-binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO J. 11:1493–1501.google scholarpdf
803Vinopal, R. T. 1987. Selectable phenotypes. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.google scholar
804Voll, M. J. 1967. Polarity in the histidine operon. III. The isolation of prototrophic polar mutations. J. Mol. Biol. 30:109–124.google scholarpdf
805Voll, M. J., and L. Leive. 1970. Release of lipopolysaccharide in Escherichia coli resistant to the permeability increase induced by ethylenediaminetetraacetate. J. Biol. Chem. 245:1108–1114.google scholarpdf
806Vonder Haar, R. A., and H. E. Umbarger. 1972. Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine. J. Bacteriol. 112:142– 147.google scholarpdf
807Wachi, M., M. Doi, S. Tamaki, W. Park, S. Nakajima-Iijima, and M. Matsuhashi. 1987. Mutant isolation and molecular cloning of mre genes which determine cell shape sensitivity to mecillinam and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169:4935– 4940.google scholarpdf
808Wada, C., and T. Yura. 1971. Phenethyl alcohol resistance in Escherichia coli. II. Replication of F (fertility) factor in the resistant strain C600. Genetics 69:275–287.google scholarpdf
809Wada, C., and T. Yura. 1974. Phenethyl alcohol resistance in Escherichia coli. III. A temperature-sensitive mutation (dnaP) affecting DNA replication. Genetics 77:199–220.google scholarpdf
810Walker, G. C. 1987. The SOS response of Escherichia coli,. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.google scholarpdf
811Wallace, B. J., and J. Pittard. 1969. Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J. Bacteriol. 97:1234–1241.google scholarpdf
812Wandersman, C., F. Moreno, and M. Schwartz. 1980. Pleiotropic mutations rendering Escherichia coli K-12 resistant to bacteriophage TP1. J. Bacteriol. 143:1374–1383.google scholarpdf
813Wargel, R. J., C. A. Shadur, and F. C. Neuhaus. 1971. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J. Bacteriol. 105:1028–1035.google scholarpdf
814Watanabe, H., H. Hashimoto, and S. Mitsuhashi. 1980. Salmonella typhimurium LT2 mutation affecting the deletion of resistance determinants on R plasmids. J. Bacteriol. 142:145–152.google scholarpdf
815Watanabe, N.-A., T. Nagasu, K. Katsu, and K. Kitoh. 1987. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother. 31:497–504.google scholarpdf
816Watson, C., and K. Paigen. 1971. Isolation and characterization of an Escherichia coli bacteriophage requiring cell wall galactose. J. Virol. 8:669–674.google scholarpdf
817Webb, M. 1970. The mechanism of acquired resistance to Co2+ and Ni2+ in gram-positive and gram-negative bacteria. Biochim. Biophys. Acta 222:440–446.google scholarpdf
818Weber, J., R. S. F. Lee, E. Grell, and A. E. Senior. 1992. Investigation of the aurovertin binding site of Escherichia coli F-1 ATPase by fluorescence spectroscopy and site-directed mutagenesis. Biochemistry 31:5112–5116.google scholarpdf
819Wei, C. R., and S. Kustu. 1981. Glutamine auxotrophs with mutations in a nitrogen regulatory gene, ntrC, that is near glnA. Mol. Gen. Genet. 183:392–399.google scholarpdf
820Weiner, J. H., C. E. Furlong, and L. A. Heppel. 1971. A binding protein for L-glutamine and its relation to active transport in E. coli. Arch. Biochem. Biophys. 142:715–717.google scholarpdf
821Weiner, J. H., and L. A. Heppel. 1971. A binding protein for glutamine and its relation to active transport in E. coli. J. Biol. Chem. 246:6933–6941.google scholarpdf
822White, B. J., S. J. Hochhauser, N. M. Cintron, and B. Weiss. 1976. Genetic mapping of xthA, the structural gene for exonuclease III in Escherichia coli strain K12. J. Bacteriol. 126:1082–1088.google scholarpdf
823White, R. J., and P. W. West. 1970. An examination of the inhibitory effects of N- iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants. Biochem. J. 118:81–87.google scholarpdf
824Whitfield, H. J., Jr. 1971. Purification and properties of the wild type and a feedback resistant phosphoribosyladenosine triphosphate pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis in Salmonella typhimurium. J. Biol. Chem. 246:899–908.google scholarpdf
825Wiater, A., M. Filutowicz, and D. Hulanicka. 1982. A new class of mutants of the cysB regulatory gene for cysteine biosynthesis in Salmonella typhimurium. J. Gen. Microbiol. 128:1785– 1790.google scholarpdf
826Wiater, A., and D. Hulanicka. 1978. The regulatory cysK mutant of S. typhimurium. Acta Biochim. Pol. 25:281–287.google scholarpdf
827Wiater, A., and D. Hulanicka. 1979. Properties of cysK mutants of Escherichia coli K12. Acta Biochim. Pol. 26:21–28.google scholarpdf
828Wiater, A., and T. Klopotowski. 1972. Mutations rendering Salmonella typhimurium resistant to 3-aminotriazole in the presence of histidine. Acta Biochim. Pol. 19:191–199.google scholarpdf
829Wijsman, H. J. W., and H. C. Pafort. 1974. Pleiotropic mutations in Escherichia coli conferring tolerance to glycine and sensitivity to penicillin. Mol. Gen. Genet. 128:349–357.google scholarpdf
830Wild, D. G. 1988. Reversion from erythromycin dependence in Escherichia coli: strains altered in ribosomal sub-unit association and ribosome assembly. J. Gen. Microbiol. 134:1251–1263.google scholarpdf
831Wild, J., and T. Klopotowski. 1975. Insensitivity of D-amino acid dehydrogenase synthesis to catabolite repression in dadR mutants of Salmonella typhimurium. Mol. Gen. Genet. 136:63–73.google scholarpdf
832Wild, J., and T. Klopotowski. 1981. D-amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in the enzyme activity and localization of the structural gene. Mol. Gen. Genet. 181:373–378.google scholarpdf
833Wilkinson, R. C., P. Gemski, Jr., and B. A. D. Stocker. 1972. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J. Gen. Microbiol. 70:527–554.google scholarpdf
834Williams, J. C., C. E. Lee, and J. R. Wild. 1980. Genetic and biochemical characterization of distinct transport systems for uracil, uridine, and cytidine in Salmonella typhimurium. Mol. Gen. Genet. 178:121–130.google scholarpdf
835Williams, M. D., J. A. Fuchs, and M. C. Flickinger. 1991. Null mutations in the stringent starvation protein of Escherichia coli disrupt lytic development of bacteriophage P1. Gene 109:21–30.google scholarpdf
836Williams, M. V., T. J. Kerr, R. D. Lemmon, and C. J. Tritz. 1980. Azaserine resistance in Escherichia coli: chromosomal location of multiple genes. J. Bacteriol. 143:383–388.google scholarpdf
837Williams, M. V., J. J. Rowe, T. J. Kerr, and G. J. Tritz. 1977. Studies on the modes of action of azaserine in Escherichia coli mechanism of resistance to azaserine. Microbios 19:181–190.google scholarpdf
838Willsky, G. R., R. L. Bennett, and M. H. Malamy. 1973. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bacteriol. 113:529–539.google scholarpdf
839Wittenbach, V. A., D. Rayner, and J. V. Schloss. 1992. Pressure points in the biosynthetic pathway for branched chain amino acids. Biosynthesis and Molecular Regulation of Amino Acids in Plants. American Society of Plant Physiologists, Rockville, Md.google scholarpdf
840Wittman, H. G., C. Stoffler, D. Apirion, L. Rosen, K. Tanaka, M. Tamaki, R. Takata, S. Dekio, E. Otaka, and S. Osawa. 1973. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127:175–189.google scholarpdf
841Wolfner, M. D. Yep, F. Messenguy, and G. Fink. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96:273–290.google scholarpdf
842Wolfson, J. S., D. C. Hooper, G. L. McHugh, M. A. Bozza, and M. N. Swartz. 1990. Mutants of Escherichia coli K12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34:1938–1943.google scholarpdf
843Wood, J. M. 1981. Genetics of L-proline utilization in Escherichia coli. J. Bacteriol. 146:895–901.google scholarpdf
844Woodward, M. J., and H. P. Charles. 1982. Genes for L-sorbose utilization in Escherichia coli. J. Gen. Microbiol. 128:1969–1980.google scholarpdf
845Woodward, M. J., and H. P. Charles. 1983. Polymorphism in Escherichia coli: rtl, atl, and gat regions behave as chromosomal alterations. J. Gen. Microbiol. 129:75–84.google scholarpdf
846Wooldridge, K. G., and P. H. Williams. 1991. Sensitivity of Escherichia coli to cloacin DF13 involves the major outer membrane protein OmpF. J. Bacteriol. 173:2420–2424.google scholarpdf
847Wu, R., S. Yang, K. Jin, X. Chu, and M. Li. 1987. Cloning and mutagenesis of threonine operon. Shengwu Gongcheng Xuebao 3:177–182.google scholarpdf
848Wu, T. T. 1976. Growth of a mutant of Escherichia coli K12 on xylitol by recruiting enzymes for D-xylose and L-1,2-propanediol. Biochim. Biophys. Acta 428:656–666.google scholarpdf
849Wu, T. T. 1976. Growth on D-arabitol of a mutant strain of Escherichia coli K12 using a novel dehydrogenase and enzymes related to L-1,2-propanediol and D-xylose metabolism. J. Gen. Microbiol. 94:246–256.google scholarpdf
850Xu, S., and T. Qi. 1990. Enhancing effect of chuangxinmycin on synthesis of enzymes in tryptophan synthesis pathway of chuangxinmycin resistant mutant strain of E. coli. Zhongguo Yixue Kexueyuan Xuebao 12:25–30.google scholar
851Yadav, N., R. E. McDevitt, S. Benard, and S. C. Falco. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. USA 83:4418–4422.google scholarpdf
852Yagil, E., and H. Be’eri. 1977. Arsenate-resistant alkaline phosphatase-constitutive mutants of Escherichia coli. Mol. Gen. Genet. 154:185–189.google scholarpdf
853Yamada, T., and J. Davies. 1971. A genetic and biochemical study of streptomycin- and spectinomycin-resistance in Salmonella typhimurium. Mol. Gen. Genet. 110:197–210.google scholarpdf
854Yamagata, H., C. Ippolito, M. Inukai, and M. Inouye. 1982. Temperature-sensitive processing of outer membrane lipoprotein in an Escherichia coli mutant. J. Bacteriol. 152:1163–1168.google scholarpdf
855Yamagishi, J., H. Yoshida, M. Yamayoshi, and S. Nakamura. 1986. Nalidixic acid resistant mutations of the gyrB gene of Escherichia coli. Mol. Gen. Genet. 204:367–373.google scholarpdf
856Yamamoto, T., and Y. Fujiwara. 1990. Uracil DNA glycosylase causes 5-bromodeoxyuridine photosensitization in Escherichia coli K-12. J. Bacteriol. 172:5278–5285.google scholarpdf
857Yamasaki, M., R. Aono, and G. Tamura. 1976. FL-1060 binding protein of Escherichia coli is probably under the control of cyclic AMP. Agric. Biol. Chem. 40:1665–1667.google scholarpdf
858Yanagisawa, T., J. T. Lee, H. C. Wu, and M. Kawakam. 1994. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli: a proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J. Biol. Chem. 269:24304–24309.google scholarpdf
859Yarmolinsky, M. B., H. Wiesmeyer, H. M. Kalckar, and E. Jordan. 1959. Hereditary defects in galactose metabolism in Escherichia coli mutants. II. Galactose-induced sensitivity. Proc. Natl. Acad. Sci. USA 45:1786–1791.google scholarpdf
860Yoshida, H., M. Bogaki, M. Nakamura, and S. Nakamura. 1990. Quinolone resistance- determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271–1272.google scholarpdf
861Yoshikawa, M., A. Okuyuma, and N. Tanaka. 1975. A third kasugamycin resistance locus, ksgC, affecting ribosomal protein S2 in Escherichia coli K-12. J. Bacteriol. 122:796–797.google scholarpdf
862Yudkin, M. D. 1977. Unstable mutations that relieve catabolite repression of tryptophanase synthesis by Escherichia coli. J. Bacteriol. 130:57–61.google scholarpdf
863Yura, T., and K. Igarishi. 1968. RNA polymerase mutants of Escherichia coli. I. Mutants resistant to streptovaricin. Proc. Natl. Acad. Sci. USA 61:1313–1319.google scholarpdf
864Yura, T., and C. Wada. 1968. Phenethyl alcohol resistance in Escherichia coli. I. Resistance of strain C600 and its relation to azide resistance. Genetics 59:177–190.google scholarpdf
865Zak, V. L., and R. A. Kelln. 1978. 5-Fluoroorotate-resistant mutants of Salmonella typhimurium. Can. J. Microbiol. 24:1339–1345.google scholarpdf
866Zak, V. L., and R. A. Kelln. 1981. A Salmonella typhimurium mutant dependent upon carbamyl aspartate for resistance to 5-fluorouracil is specifically altered in ubiquinone biosynthesis. J. Bacteriol. 145:1095–1098.google scholarpdf
867Zissler, J., E. Signer, and F. Schaefer. 1971. The role of recombination in growth of bacteriophage lambda. I. The gamma gene. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.google scholarpdf
868Zwiebel, L. J., M. Inukai, K. Nakamura, and M. Inouye. 1981. Preferential selection of deletion mutations of the outer membrane lipoprotein gene of Escherichia coli by globomycin. J. Bacteriol. 145:654–656. google scholarpdf
869Comai, L.. 1985. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use. US Patent US4535060.google scholarpdf
870Lin, S. C. L., D. T. Palmer, and H. I. Miller. 1986. Phage resistant E. Coli bacterium and method for making the same. European Patent EP0183469A1.google scholarpdf
871Miller, E. S.. 1984. PhD Thesis. Purdue University.google scholar
872Epelbaum, S., Z. Barak, R. Larossa, and D. Chipman. 1994. Unpublished data. google scholar
873Freitag, C. S.. 1982. The application of streptozotocin resistance and transposon mutagenesis in the selection of pts mutations in Salmonella Typhimurium (PhD Thesis). North Carolina State University.google scholar

Contribute to free E. coli (and Salmonella) knowledge!

These data were automatically extracted and parsed from the pdf, using a few bash and python scripts. Many mistakes may remain, either introduced by our parsing or present in the original book. Moreover finding a pdf for each reference requires manual work in many cases. You are very welcome to contribute!

Start by cloning the git repository from https://github.com/afrenoy/EcoliSelectableGenes. You can then easily:

After doing any of these changes, you can just run ./generatewebpage.py to update the main file index.html. If you are satisfied with the outcome, send a patch / a pull request.
Other contributions and suggestions of improvement are also very welcome!