About this document
Escherichia coli and Salmonella is the bible of microbiology. It contains data daily used by many researchers. The chapter 139 (Mutant Selections Linking Physiology, Inhibitors, and Genotypes), by Robert A. LaRossa, contains two famous tables listing all genes for which a positive or negative selection has been reported in the litterature. While a pdf is available from ASM, its format makes it hard to use. Moreover it contains small mistakes that could easily be corrected (eg typos in the reference table). Eventually academics may want to collectively keep updating these tables with more recent litterature.
For these reasons, I extracted the two tables from the pdf and created this easily parsable and updatable webpage, with links between gene names and EcoCyc, and between reference number and full bibliographic information (including a pdf when available).
The raw data can also be downloaded as csv files:
- Selections giving rise to mutants: view online or download raw data
- Genes for which selections exist: view online or download raw data
- Bibliographic references: view online or downlad raw data
And importantly, anybody can contribute to this document!
Selection purpose and technique | Mutant gene | Type |
---|---|---|
Acetate + gluconate as C source in ppc | gntR | Expansion of metabolic capacity |
Acetate + gluconate as C source in ppc | gntS | Expansion of metabolic capacity |
Acetyl(N)histidine + ornithine satisfaction of his | argB | Expansion of metabolic capacity |
Acetyl(N)histidine + ornithine satisfaction of his | argC | Expansion of metabolic capacity |
Acetyl(N)histidine + ornithine satisfaction of his | argE | Expansion of metabolic capacity |
Acetyl(N)histidine + ornithine satisfaction of his | argH | Expansion of metabolic capacity |
Acetylhistidine satisfaction of his | argR | Expansion of metabolic capacity |
Acetyl(N)lactonate as sole N source | lacI, operator | Expansion of metabolic capacity |
Acetylmethionine satisfaction of met | argR | Expansion of metabolic capacity |
Acetylornithine + uracil satisfaction of car (pyrA) | argA | Expansion of metabolic capacity |
Acetylornithine + uracil satisfaction of car (pyrA) | argB | Expansion of metabolic capacity |
Acetylornithine + uracil satisfaction of car (pyrA) | argC | Expansion of metabolic capacity |
Acetylornithine + uracil satisfaction of car (pyrA) | argD | Expansion of metabolic capacity |
Adenosine as C source in upp deoD | xapR | Expansion of metabolic capacity |
Aminobutyrate as N source | gabC | Expansion of metabolic capacity |
Arabinitol (D) resistance | mtlA | Expansion of metabolic capacity |
Arabinose (L) as C source in cya or crp | rpoD | Expansion of metabolic capacity |
Arabinose (L) as C source in presence of lac operon inducer | lacY | Expansion of metabolic capacity |
Arabinose (D) as C source | fucA | Expansion of metabolic capacity |
Arabitol as C source | gatACD | Expansion of metabolic capacity |
Arabitol (D) as C source in fuc | dgd | Expansion of metabolic capacity |
Arbutin as a C source | bglBC | Expansion of metabolic capacity |
Arbutin as C source) | osmZ (bglY) | Expansion of metabolic capacity |
Arginine as N source | hisP | Expansion of metabolic capacity |
Arginine-independent growth of pyrH in presence of uracil | pyrB | Expansion of metabolic capacity |
Arginine-independent growth of pyrH in presence of uracil | pyrC | Expansion of metabolic capacity |
Arginine-independent growth of pyrH in presence of uracil | pyrD | Expansion of metabolic capacity |
Arginine-resistant, proline-independent growth of ∆pro | argR | Expansion of metabolic capacity |
β-Glycerol-phosphate as C source in presence of high phosphate | phoA | Expansion of metabolic capacity |
β-Glycerol-phosphate as C source in presence of high phosphate | phoR | Expansion of metabolic capacity |
β-Glycerol-phosphate as C source in presence of high phosphate | phoS | Expansion of metabolic capacity |
β-Glycerol-phosphate as C source in presence of high phosphate | phoT | Expansion of metabolic capacity |
Biotin sulfoxide utilization in chl bio | chlE | Expansion of metabolic capacity |
Branched-chain amino acid satisfaction of ∆ilvDC hisT | ilvA | Expansion of metabolic capacity |
Butyrate as C source in fadR(Con) | atoC | Expansion of metabolic capacity |
Butyrate or valerate as better C source | iclR | Expansion of metabolic capacity |
Cellobiose as C source | celABCDF | Expansion of metabolic capacity |
Chemostat growth improved | mut | Expansion of metabolic capacity |
Citrate as C source | cit | Expansion of metabolic capacity |
Citrate as C source in presence of low cAMP | cpd | Expansion of metabolic capacity |
D-Amino acid satisfaction of amino acid auxotrophy | dadA | Expansion of metabolic capacity |
DAP-independent growth of ∆(mal-asd) in the presence of serine, methionine,and glycine D-Histidine + glycylglutamine satisfaction of his auxotrophs | glnA | Expansion of metabolic capacity |
Decanoate as C source | fadR | Expansion of metabolic capacity |
Deoxyadenosine (low) satisfaction of purine requirement | add | Expansion of metabolic capacity |
Deoxyadenosine + hypoxanthine satisfaction of purine requirement | add | Expansion of metabolic capacity |
Diamino (2,6)purine satisfaction of purine auxotrophy | deoR | Expansion of metabolic capacity |
Erythromycin growth dependence | mac | Expansion of metabolic capacity |
Ethanol as C source | adh | Expansion of metabolic capacity |
Ethyleneglycol as C source in propanediol utilizer | fucA | Expansion of metabolic capacity |
Fructose as C source in ptsF or ptsM | srlD | Expansion of metabolic capacity |
Fructose 1-phosphate as C source | uhpR | Expansion of metabolic capacity |
Fucose (L) as C source in propanediol utilizer | fucA | Expansion of metabolic capacity |
Fucose + arabinose-supported growth in galP | mglA | Expansion of metabolic capacity |
Fucose + arabinose-supported growth in galP | mglB | Expansion of metabolic capacity |
Fucose + arabinose-supported growth in galP | mglC | Expansion of metabolic capacity |
Galactose as C source for gal (leader)::IS | rho | Expansion of metabolic capacity |
Galacturonide as C source | uidA | Expansion of metabolic capacity |
Galacturonide as C source | uidR | Expansion of metabolic capacity |
Glucanate as C source in eda | edd | Expansion of metabolic capacity |
Glucosamine as C source | ptsG | Expansion of metabolic capacity |
Glucosamine 6-phosphate as C source | uhpR | Expansion of metabolic capacity |
Glucosamine as anaerobic C source in ptsG | dgsA | Expansion of metabolic capacity |
Glucose 1-phosphate as C source | uhpR | Expansion of metabolic capacity |
Glucose as C source in ∆ptsHI | galC | Expansion of metabolic capacity |
Glucose as C source in ppc | iclR | Expansion of metabolic capacity |
Glucose as C source in ∆ptsHI | galR | Expansion of metabolic capacity |
Glucosides (β) as C source | gyrA (hisU) | Expansion of metabolic capacity |
Glucosides (β) as C source | gyrB (hisW) | Expansion of metabolic capacity |
Glutamate as C source | gadS | Expansion of metabolic capacity |
Glutamate as C source | gltH | Expansion of metabolic capacity |
Glutamate as C source | gltS | Expansion of metabolic capacity |
Glutamate as C source at 42°C | gltR | Expansion of metabolic capacity |
Glutamine as C source | glnP | Expansion of metabolic capacity |
Glycerol as C source in ppc | iclR | Expansion of metabolic capacity |
Glycerol + gluconate as C source in eda | gntM | Expansion of metabolic capacity |
Glycerol + methylglucuronide as C source in eda | gurBCD | Expansion of metabolic capacity |
Glycerol 3-phosphate as C source in glpT | ugpAB | Expansion of metabolic capacity |
Hemin satisfaction of hemA auxotroph | hemB | Expansion of metabolic capacity |
Hemin satisfaction of hemA auxotroph | rfa | Expansion of metabolic capacity |
Hexuronate as C source in noninducible strain | exuR | Expansion of metabolic capacity |
Histidinal satisfaction of his auxotroph requirement at 30°C | his structural genes | Expansion of metabolic capacity |
Histidinal satisfaction of his auxotroph requirement at 30°C | hisG | Expansion of metabolic capacity |
Histidine (D) satisfaction of his auxotroph requirement | his structural genes | Expansion of metabolic capacity |
Histidine (D) satisfaction of his auxotroph requirement | hisG | Expansion of metabolic capacity |
Histidine (D) satisfaction of his auxotroph requirement | dhuA | Expansion of metabolic capacity |
Histidine as C source | hut | Expansion of metabolic capacity |
Histidine as N source | hut | Expansion of metabolic capacity |
Improved growth in icd | gltA | Expansion of metabolic capacity |
Inosine as C source in upp deoD | xapR | Expansion of metabolic capacity |
Inosine as improved C source | deoR | Expansion of metabolic capacity |
Keto(2)-3-deoxygalactonate as C source | kdgR | Expansion of metabolic capacity |
Keto(2)-3-deoxygalactonate as C source | dgoR | Expansion of metabolic capacity |
Lactate + fumarate as anaerobic energy source | chlABDE | Expansion of metabolic capacity |
Lactate + nitrate as anaerobic energy source (chl to chl+) | chlE | Expansion of metabolic capacity |
Lactitol as C source | lacI, operator | Expansion of metabolic capacity |
Lactobionic acid as C source | lacI, operator | Expansion of metabolic capacity |
Lactobionic acid as C source | lacZ | Expansion of metabolic capacity |
Lactose utilization after conjugation of F′lac into Salmonella sp. | hsd | Expansion of metabolic capacity |
Lactose utilization in ∆lacZ | ebgA | Expansion of metabolic capacity |
Leucine (D) satisfaction of leu auxotrophs | lrp (livR, lstR, lss, mbl, oppl) | Expansion of metabolic capacity |
Lyxose (D) as C source | manC | Expansion of metabolic capacity |
Malate (L) as improved C source | dct | Expansion of metabolic capacity |
Malate (D) as C source | dml | Expansion of metabolic capacity |
Maltose as C source in malT | malP | Expansion of metabolic capacity |
Maltose as C source in malT | malQ | Expansion of metabolic capacity |
Maltose utilization in malT | bymA | Expansion of metabolic capacity |
Mannitol (limiting) as C source | mtlC | Expansion of metabolic capacity |
Mannose as C source | ptdG | Expansion of metabolic capacity |
Melibiose as C source | lacI, operator | Expansion of metabolic capacity |
Melibiose as C source and acetyl(N)lactonate as N source | lacI, operator | Expansion of metabolic capacity |
Methyl-β-galactoside-supported growth | mglD | Expansion of metabolic capacity |
Methylgalacturonide as C source | uidA | Expansion of metabolic capacity |
Methylgalacturonide as C source | uidR | Expansion of metabolic capacity |
Methylgalacturonide as C source | uxuR | Expansion of metabolic capacity |
Methyl(β)glucoside as C source | bglT | Expansion of metabolic capacity |
Methylglucuronide + glycerol-supported growth | uidA | Expansion of metabolic capacity |
Neolactose as C source | lacI, operator | Expansion of metabolic capacity |
Nicotinamide as sole N source | pncA | Expansion of metabolic capacity |
Phenylgalactoside as C source | lacI, operator | Expansion of metabolic capacity |
Proline as sole N source with glucose as C source | putA | Expansion of metabolic capacity |
Proline-independent growth of proAB | argD | Expansion of metabolic capacity |
Propanediol as C source | fucA | Expansion of metabolic capacity |
Propionate as C source | prp | Expansion of metabolic capacity |
Raffinose as C source in lacI | mel (generic) | Expansion of metabolic capacity |
Raffinose as C source | lacI, operator | Expansion of metabolic capacity |
Ribitol utilization | gatACD | Expansion of metabolic capacity |
Salicin as C source | bglB,C | Expansion of metabolic capacity |
Salicin as C source | osmZ | Expansion of metabolic capacity |
Serine (L) as C source | cpxA | Expansion of metabolic capacity |
Serine (L) as C source | ecfB | Expansion of metabolic capacity |
Sorbose (L) as C source in crosses with wild strains | sorAT | Expansion of metabolic capacity |
Streptomycin independence of rpsL | rpsD | Expansion of metabolic capacity |
Streptomycin independence of rpsL | rpsE | Expansion of metabolic capacity |
Succinate as improved C source | cpd | Expansion of metabolic capacity |
Succinate-independent growth in lpd | sdh | Expansion of metabolic capacity |
Sucrose as C source | dsdA | Expansion of metabolic capacity |
Sucrose as C source | dsdC | Expansion of metabolic capacity |
Threonine as N source | ilvA | Expansion of metabolic capacity |
Tyramine as N source | tyn | Expansion of metabolic capacity |
Uridine as C source, improved utilization | cytR | Expansion of metabolic capacity |
Valerate as C source in fadR(Con) | atoC | Expansion of metabolic capacity |
Xylitol as C source in propanediol utilizer | fucA | Expansion of metabolic capacity |
Acid resistance | atr | Resistance to inorganic chemicals |
Acid resistance | phoE | Resistance to inorganic chemicals |
Arsenate resistance | glpT | Resistance to inorganic chemicals |
Arsenate resistance | phoR | Resistance to inorganic chemicals |
Arsenate resistance | phoS | Resistance to inorganic chemicals |
Arsenate resistance | phoT | Resistance to inorganic chemicals |
Arsenate resistance | pstABCS | Resistance to inorganic chemicals |
Arsenate resistance | pit | Resistance to inorganic chemicals |
Azide resistance | atpA–atpE | Resistance to inorganic chemicals |
Azide resistance | cysB | Resistance to inorganic chemicals |
Azide resistance | cysK | Resistance to inorganic chemicals |
Azide resistance | secA | Resistance to inorganic chemicals |
Chlorate resistance | chlABCDEG | Resistance to inorganic chemicals |
Chlorate resistance | narCG | Resistance to inorganic chemicals |
Chlorate resistance | narH | Resistance to inorganic chemicals |
Chromate + selenate resistance | cysL | Resistance to inorganic chemicals |
Chromate resistance | cysA | Resistance to inorganic chemicals |
Chromate resistance | cysB | Resistance to inorganic chemicals |
Chromate resistance | cysC | Resistance to inorganic chemicals |
Chromate resistance | cysD | Resistance to inorganic chemicals |
Chromate resistance | cysH | Resistance to inorganic chemicals |
Chromate resistance | cysI | Resistance to inorganic chemicals |
Chromate resistance | cysJ | Resistance to inorganic chemicals |
Copper resistance in ompC | ompF | Resistance to inorganic chemicals |
Copper resistance | ompR | Resistance to inorganic chemicals |
Diazoborine resistance | envM | Resistance to inorganic chemicals |
Lithium resistance (multicopy) | nhaA | Resistance to inorganic chemicals |
Lithium-resistant utilization of melibiose | melB | Resistance to inorganic chemicals |
Manganese resistance | corABCD | Resistance to inorganic chemicals |
Manganese resistance | fur | Resistance to inorganic chemicals |
Manganese resistance | mng | Resistance to inorganic chemicals |
Nickel resistance | corABCD | Resistance to inorganic chemicals |
Osmotolerance | crp | Resistance to inorganic chemicals |
Osmotolerance | cyaA | Resistance to inorganic chemicals |
Osmotolerance | osmB | Resistance to inorganic chemicals |
Osmotolerance | proA | Resistance to inorganic chemicals |
Osmotolerance | proB | Resistance to inorganic chemicals |
Peroxide resistance | oxyR | Resistance to inorganic chemicals |
Selenate resistance | cysA | Resistance to inorganic chemicals |
Selenate resistance | cysB | Resistance to inorganic chemicals |
Selenate resistance in cysM | cysB | Resistance to inorganic chemicals |
Selenate resistance | cysK | Resistance to inorganic chemicals |
Selenate resistance | cysL | Resistance to inorganic chemicals |
Selenite resistance | cysK | Resistance to inorganic chemicals |
Selenite resistance | gshA | Resistance to inorganic chemicals |
Selenite resistance | gshB | Resistance to inorganic chemicals |
Tellurite resistance | phoB | Resistance to inorganic chemicals |
Tributyl tin resistance | atpA–atpE | Resistance to inorganic chemicals |
Acetylnorvaline resistance in argR(Con) | argE | Resistance to biological and organic chemicals |
Acetylnorvaline resistance in argR(Con) | argR | Resistance to biological and organic chemicals |
Acridine resistance | dnaE | Resistance to biological and organic chemicals |
Actinomycin D resistance in the presence of EDTA | pldA | Resistance to biological and organic chemicals |
Adenine resistance in hpt gpt | apt | Resistance to biological and organic chemicals |
Adenine resistance in hpt gpt | purR | Resistance to biological and organic chemicals |
Alafosfalin resistance | pepA | Resistance to biological and organic chemicals |
Alafosfalin resistance | tpp | Resistance to biological and organic chemicals |
Alanyl-2-aminopropionate resistance | oppA | Resistance to biological and organic chemicals |
Albicidin resistance | tsx | Resistance to biological and organic chemicals |
Albomycin resistance | exbB | Resistance to biological and organic chemicals |
Albomycin resistance | fhuA | Resistance to biological and organic chemicals |
Albomycin resistance | fhuB | Resistance to biological and organic chemicals |
Albomycin resistance | pepN | Resistance to biological and organic chemicals |
Albomycin resistance | sidCF | Resistance to biological and organic chemicals |
Albomycin resistance | sidK | Resistance to biological and organic chemicals |
Albomycin resistance | tonB | Resistance to biological and organic chemicals |
Aldohexuronate resistance in eda | exuT | Resistance to biological and organic chemicals |
Aldohexuronate resistance in eda | exuR | Resistance to biological and organic chemicals |
Allyl alcohol resistance | adhE | Resistance to biological and organic chemicals |
Amidinopenicillin tolerance | sloB | Resistance to biological and organic chemicals |
Amikacin resistance | cpxA | Resistance to biological and organic chemicals |
Amino(2)purine resistance in dam | mutH | Resistance to biological and organic chemicals |
Amino(2)purine resistance in dam | mutL | Resistance to biological and organic chemicals |
Amino(2)purine resistance in dam | mutS | Resistance to biological and organic chemicals |
Amino(4)phenylalanine resistance | aroF | Resistance to biological and organic chemicals |
Amino(4)phenylalanine resistance | tyrA | Resistance to biological and organic chemicals |
Amino(4)phenylalanine resistance | tyrR | Resistance to biological and organic chemicals |
Amino(6)nicotinamide resistance | nadA | Resistance to biological and organic chemicals |
Amino(6)nicotinamide resistance | nadD | Resistance to biological and organic chemicals |
Amino(6)nicotinamide resistance | pncA | Resistance to biological and organic chemicals |
Amino(6)nicotinamide resistance | pncB | Resistance to biological and organic chemicals |
Amino(6)nicotinamide resistance | pncX | Resistance to biological and organic chemicals |
Amino(6)nicotinate resistance | pncB | Resistance to biological and organic chemicals |
Aminobutyrate resistance | ilv structural genes | Resistance to biological and organic chemicals |
Aminobutyrate resistance | ilvB | Resistance to biological and organic chemicals |
Aminobutyrate resistance | ilvH | Resistance to biological and organic chemicals |
Aminobutyrate resistance | ilvI | Resistance to biological and organic chemicals |
Aminoethylcysteine (thialysine) resistance | lysC | Resistance to biological and organic chemicals |
Aminoethylcysteine (thialysine) resistance | lysP | Resistance to biological and organic chemicals |
Aminoethylcysteine (thialysine) resistance | lysS | Resistance to biological and organic chemicals |
Aminoglycoside resistance | nek | Resistance to biological and organic chemicals |
Amino(2)hydroxy(3)pentoate resistance | thr structural genes | Resistance to biological and organic chemicals |
Aminopterin resistance | thyA | Resistance to biological and organic chemicals |
Aminotriazole resistance | amtA, amtB | Resistance to biological and organic chemicals |
Aminotriazole resistance | his structural genes | Resistance to biological and organic chemicals |
Aminotriazole resistance in relA | gyrB | Resistance to biological and organic chemicals |
Ampicillin resistance | ampC | Resistance to biological and organic chemicals |
Ampicillin resistance | ampD | Resistance to biological and organic chemicals |
Ampicillin resistance | ampE | Resistance to biological and organic chemicals |
Ampicillin resistance | envZ | Resistance to biological and organic chemicals |
Ampicillin resistance | galU | Resistance to biological and organic chemicals |
Ampicillin resistance | hipA | Resistance to biological and organic chemicals |
Ampicillin resistance | hipQ | Resistance to biological and organic chemicals |
Ampicillin resistance | ompC | Resistance to biological and organic chemicals |
Ampicillin resistance | ompF | Resistance to biological and organic chemicals |
Ampicillin resistance | ompR | Resistance to biological and organic chemicals |
Ampicillin resistance | ptsI | Resistance to biological and organic chemicals |
Ampicillin resistance | rfa (general) | Resistance to biological and organic chemicals |
Ampicillin resistance | tolD | Resistance to biological and organic chemicals |
Ampicillin resistance | tolE | Resistance to biological and organic chemicals |
Arabinitol (D) resistance | mtlA | Resistance to biological and organic chemicals |
Arbitol (D) resistance | gatACD | Resistance to biological and organic chemicals |
Arbutin resistance in dgk | mdoB | Resistance to biological and organic chemicals |
Arginine-resistant, proline-independent growth of ∆pro | argR | Resistance to biological and organic chemicals |
Auroventin resistance | atpA–atpE | Resistance to biological and organic chemicals |
Aza(5)cytidine resistance | dcm | Resistance to biological and organic chemicals |
Azadeoxycytidine resistance | cdd | Resistance to biological and organic chemicals |
Aza(6)uracil resistance | gpt | Resistance to biological and organic chemicals |
Aza(8)guanine resistance | ndk | Resistance to biological and organic chemicals |
Aza(8)guanine resistance | upp | Resistance to biological and organic chemicals |
Azaleucine resistance | aroP | Resistance to biological and organic chemicals |
Azaleucine resistance | azl | Resistance to biological and organic chemicals |
Azaleucine resistance | tolB | Resistance to biological and organic chemicals |
Azaleucine resistance | leuS | Resistance to biological and organic chemicals |
Azaleucine resistance | livG | Resistance to biological and organic chemicals |
Azaleucine resistance | livH | Resistance to biological and organic chemicals |
Azaserine + tryptophan resistance | dhuA | Resistance to biological and organic chemicals |
Azaserine + tryptophan resistance in dhuA | hisJ | Resistance to biological and organic chemicals |
Azaserine resistance | aroP | Resistance to biological and organic chemicals |
Azaserine resistance | azaAB | Resistance to biological and organic chemicals |
Azaserine resistance | cysA | Resistance to biological and organic chemicals |
Azaserine resistance | cysB | Resistance to biological and organic chemicals |
Azaserine resistance | cysC | Resistance to biological and organic chemicals |
Azaserine resistance | cysD | Resistance to biological and organic chemicals |
Azaserine resistance | cysE | Resistance to biological and organic chemicals |
Azaserine resistance | cysG | Resistance to biological and organic chemicals |
Azaserine resistance | cysH | Resistance to biological and organic chemicals |
Azaserine resistance | cysI | Resistance to biological and organic chemicals |
Azaserine resistance | cysJ | Resistance to biological and organic chemicals |
Azaserine resistance | cysK | Resistance to biological and organic chemicals |
Azaserine resistance | cysM | Resistance to biological and organic chemicals |
Azaserine resistance | mut (generic) | Resistance to biological and organic chemicals |
Azetidine carboxylate resistance | proB | Resistance to biological and organic chemicals |
Azetidine carboxylate resistance | putA | Resistance to biological and organic chemicals |
Azetidine carboxylate resistance | putP | Resistance to biological and organic chemicals |
Azidothymidine resistance | tdk | Resistance to biological and organic chemicals |
Bacilysin resistance | dppA | Resistance to biological and organic chemicals |
Bacitracin resistance | rfa | Resistance to biological and organic chemicals |
Bacteriocin resistance | tol | Resistance to biological and organic chemicals |
Bacteriocin 4-59 resistance | ompA | Resistance to biological and organic chemicals |
Bacteriocin 4-59 resistance | tonB | Resistance to biological and organic chemicals |
Bacteriocin JF246 resistance | ompA | Resistance to biological and organic chemicals |
Baikiain resistance in constitutive background | putA | Resistance to biological and organic chemicals |
β-Glycerol-phosphate resistance in glpD | phoA | Resistance to biological and organic chemicals |
Beta-lactam conjugate resistance | fhuA | Resistance to biological and organic chemicals |
Beta-lactam resistance (see mecillinam resistance) | crp | Resistance to biological and organic chemicals |
Beta-lactam resistance | cyaA | Resistance to biological and organic chemicals |
Beta-lactam resistance | lyt | Resistance to biological and organic chemicals |
Beta-lactam resistance | alaS | Resistance to biological and organic chemicals |
Beta-lactam resistance | argS | Resistance to biological and organic chemicals |
Bialaphos resistance | dppA | Resistance to biological and organic chemicals |
Borrelidin resistance | thrS | Resistance to biological and organic chemicals |
Bromodeoxyuridine + UV light resistance | ung | Resistance to biological and organic chemicals |
Cadaverine resistance | cadB | Resistance to biological and organic chemicals |
Caffeine resistance | glnV | Resistance to biological and organic chemicals |
Calmodulin inhibitor resistance | leuW | Resistance to biological and organic chemicals |
cAMP + glucose 6-phosphate + D-xylose + L-arabinose resistance | crp | Resistance to biological and organic chemicals |
cAMP + glucose 6-phosphate resistance | crp | Resistance to biological and organic chemicals |
Camphor resistance | mbrABCD | Resistance to biological and organic chemicals |
Canavanine + azauracil resistance | argR | Resistance to biological and organic chemicals |
Canavanine + thiouracil resistance | upp | Resistance to biological and organic chemicals |
Canavanine + thiouracil resistance | argP | Resistance to biological and organic chemicals |
Canavanine resistance | argS | Resistance to biological and organic chemicals |
Canavanine resistance | argP | Resistance to biological and organic chemicals |
Canavanine resistance | argR | Resistance to biological and organic chemicals |
CCCP resistance | atpA–atpE | Resistance to biological and organic chemicals |
CCCP resistance due to gene dosage | emrB | Resistance to biological and organic chemicals |
Cephalosporin E-0702 resistance | tonB | Resistance to biological and organic chemicals |
Cephalothin resistance | rfa | Resistance to biological and organic chemicals |
Chelator resistance | ompA | Resistance to biological and organic chemicals |
Chloramphenicol resistance | cmlA | Resistance to biological and organic chemicals |
Chloramphenicol resistance | marA | Resistance to biological and organic chemicals |
Chloramphenicol resistance | rrn | Resistance to biological and organic chemicals |
Chloramphenicol resistance | ompF | Resistance to biological and organic chemicals |
Chloramphenicol resistance | ompR | Resistance to biological and organic chemicals |
Chloro(β)-D-alanine resistance | dadA | Resistance to biological and organic chemicals |
Chloro(β)-D-alanine resistance | metC (ecfA) | Resistance to biological and organic chemicals |
Chloro-3-hydroxyacetone resistance in uhp(Con) | uhpT | Resistance to biological and organic chemicals |
Chloroacetaldehyde resistance | adhCE | Resistance to biological and organic chemicals |
Chloroacetate(β) resistance | cbt | Resistance to biological and organic chemicals |
Chlorobiocin resistance | gyrB | Resistance to biological and organic chemicals |
Chloroethanol resistance | adhCE | Resistance to biological and organic chemicals |
Chlorohydroxyacetone phosphate resistance | glpT | Resistance to biological and organic chemicals |
Chlorpromazine resistance | lon | Resistance to biological and organic chemicals |
Chuangxinmycin resistance | trpR | Resistance to biological and organic chemicals |
Cloacin DF13 resistance | ompF | Resistance to biological and organic chemicals |
Coenzyme A feedback resistance | coaA | Resistance to biological and organic chemicals |
Colicin “ K-type” tolerance | hemB | Resistance to biological and organic chemicals |
Colicin (multiple) resistance | envZ | Resistance to biological and organic chemicals |
Colicin (other) resistance | exbB | Resistance to biological and organic chemicals |
Colicin (other) resistance | exbC | Resistance to biological and organic chemicals |
Colicin A tolerance | cpxA | Resistance to biological and organic chemicals |
Colicin A tolerance | ompF | Resistance to biological and organic chemicals |
Colicin A group tolerance | cirA | Resistance to biological and organic chemicals |
Colicin A group tolerance | tolQ | Resistance to biological and organic chemicals |
Colicin B resistance | exbC | Resistance to biological and organic chemicals |
Colicin B resistance | fepABCDG | Resistance to biological and organic chemicals |
Colicin B resistance | tonB | Resistance to biological and organic chemicals |
Colicin B tolerance | cbt | Resistance to biological and organic chemicals |
Colicin D resistance | cbt | Resistance to biological and organic chemicals |
Colicin D tolerance | tolB | Resistance to biological and organic chemicals |
Colicin E resistance | tolC | Resistance to biological and organic chemicals |
Colicin E1 tolerance | cet | Resistance to biological and organic chemicals |
Colicin E1 tolerance | tolQAB | Resistance to biological and organic chemicals |
Colicin E2 tolerance | ompF | Resistance to biological and organic chemicals |
Colicin E3 tolerance | btuB | Resistance to biological and organic chemicals |
Colicin E3 tolerance | tolR | Resistance to biological and organic chemicals |
Colicin E2 and E3 tolerance | tolE | Resistance to biological and organic chemicals |
Colicin E2 and E3 tolerance | tolZ | Resistance to biological and organic chemicals |
Colicin E2, E3, D, Ia, and Ib tolerance | tolI | Resistance to biological and organic chemicals |
Colicin I resistance | exbB | Resistance to biological and organic chemicals |
Colicin I resistance | exbC | Resistance to biological and organic chemicals |
Colicin I resistance | ecfB | Resistance to biological and organic chemicals |
Colicin Ia and Ib tolerance | tolJ | Resistance to biological and organic chemicals |
Colicin K resistance | metC (ecfA) | Resistance to biological and organic chemicals |
Colicin K resistance | tsx | Resistance to biological and organic chemicals |
Colicin K resistance | ompA | Resistance to biological and organic chemicals |
Colicin K tolerance | ompA | Resistance to biological and organic chemicals |
Colicin K tolerance | ompF | Resistance to biological and organic chemicals |
Colicin L tolerance | envZ | Resistance to biological and organic chemicals |
Colicin L tolerance | ompF | Resistance to biological and organic chemicals |
Colicin L tolerance | fhuA | Resistance to biological and organic chemicals |
Colicin L, A, and S4 tolerance | fepABCDG | Resistance to biological and organic chemicals |
Colicin M resistance | tonB | Resistance to biological and organic chemicals |
Colicin M resistance | tolM | Resistance to biological and organic chemicals |
Colicin M tolerance | tolD | Resistance to biological and organic chemicals |
Coumermycin resistance | gyrB | Resistance to biological and organic chemicals |
Coumermycin resistance | hisW | Resistance to biological and organic chemicals |
Cyclopentane glycine resistance | ilv structural genes | Resistance to biological and organic chemicals |
Cyclopentane glycine resistance | ilvA | Resistance to biological and organic chemicals |
Cycloserine resistance | hipA | Resistance to biological and organic chemicals |
Cycloserine (D) resistance | cycA | Resistance to biological and organic chemicals |
Dapsone resistance | thdA | Resistance to biological and organic chemicals |
Dehydrobiotin resistance | bio operon | Resistance to biological and organic chemicals |
Dehydrobiotin resistance | bioP | Resistance to biological and organic chemicals |
Dehydrobiotin resistance | birA | Resistance to biological and organic chemicals |
Dehydroproline + azetidine carboxylate resistance at high osmolarity in putAputP | proU | Resistance to biological and organic chemicals |
Dehydroproline resistance | proB | Resistance to biological and organic chemicals |
Dehydroproline resistance in putA putP | proP | Resistance to biological and organic chemicals |
Deoxy(2)adenosine resistance in deoC | deoD | Resistance to biological and organic chemicals |
Deoxyadenosine + fluorouracil resistance in upp | deoA | Resistance to biological and organic chemicals |
Deoxyadenosine + fluorouracil resistance in upp | deoD | Resistance to biological and organic chemicals |
Deoxydihydroxyphosphonyl methyl fructose resistance | uhpT | Resistance to biological and organic chemicals |
Deoxy(3)-3-fluoroglucose-independent utilization of lactate | ptsHIG | Resistance to biological and organic chemicals |
Deoxy(3)-3-fluoroglucose-independent utilization of fructose | ptsG | Resistance to biological and organic chemicals |
Deoxy(3)-3-fluoroglucose resistance | ptsI | Resistance to biological and organic chemicals |
Deoxy(2)galactitol resistance in galicitol utilizer | gatACD | Resistance to biological and organic chemicals |
Deoxy(2)galactose resistance | gal operon | Resistance to biological and organic chemicals |
Deoxy(2)galactose resistance | galE | Resistance to biological and organic chemicals |
Deoxy(2)galactose resistance | galK | Resistance to biological and organic chemicals |
Deoxy(2)galactose resistance | galP | Resistance to biological and organic chemicals |
Deoxy(2)glucose-resistant utilization of melibiose | melB | Resistance to biological and organic chemicals |
Deoxyglucose resistance | manXYZ | Resistance to biological and organic chemicals |
Deoxy(2)glucose-6-phosphate resistance | uhpT | Resistance to biological and organic chemicals |
Deoxy(2)glucose-resistant fructose utilization | fruA | Resistance to biological and organic chemicals |
Deoxy(2)glucose-resistant fructose utilization | ptsG | Resistance to biological and organic chemicals |
Deoxy(2)-2-iodoacetamidoglucose resistance | nagE | Resistance to biological and organic chemicals |
Diamino(2,6)purine resistance | apt | Resistance to biological and organic chemicals |
Diamino(2,6)purine resistance in pnp | apt | Resistance to biological and organic chemicals |
Dicyclohexylcarbodiimide resistance in rfa | rfb | Resistance to biological and organic chemicals |
Dideoxy(2′,3′)thymidine resistance | tmk | Resistance to biological and organic chemicals |
Dihydroproline resistance | putP | Resistance to biological and organic chemicals |
Dihydroxybutylphosphonate resistance | cls | Resistance to biological and organic chemicals |
Dihydroxybutylphosphonate resistance | glpT | Resistance to biological and organic chemicals |
Dihydroxybutylphosphonate resistance in glpT | ugpA,B | Resistance to biological and organic chemicals |
Dihydroxybutylphosphonate resistance in uhp(Con) | uhpT | Resistance to biological and organic chemicals |
Dimethyl sulfoxide resistance | pss | Resistance to biological and organic chemicals |
Dinitropyrene resistance | atoB | Resistance to biological and organic chemicals |
Dipeptide (valine containing) resistance | dppA | Resistance to biological and organic chemicals |
Drug-resistant gene maintenance | dor | Resistance to biological and organic chemicals |
Erythromycin growth dependence | rrn | Resistance to biological and organic chemicals |
Erythromycin resistance | eryC | Resistance to biological and organic chemicals |
Erythromycin resistance | eryD | Resistance to biological and organic chemicals |
Erythromycin resistance | mac | Resistance to biological and organic chemicals |
Erythromycin resistance | rplD | Resistance to biological and organic chemicals |
Erythromycin resistance | rplV | Resistance to biological and organic chemicals |
Erythromycin resistance | rplC | Resistance to biological and organic chemicals |
Ethanol resistance | pss | Resistance to biological and organic chemicals |
Ethionine resistance | metG | Resistance to biological and organic chemicals |
Ethionine resistance | metJ | Resistance to biological and organic chemicals |
Fluoroacetate resistance | ack | Resistance to biological and organic chemicals |
Fluoroacetate resistance | pta | Resistance to biological and organic chemicals |
Fluorocitrate resistance | tct | Resistance to biological and organic chemicals |
Fluoro(5)cytosine resistance | codA | Resistance to biological and organic chemicals |
Fluoro(5)cytosine resistance | cod | Resistance to biological and organic chemicals |
Fluorodeoxycytidine resistance | cdd | Resistance to biological and organic chemicals |
Fluorodeoxycytidine resistance | nupC | Resistance to biological and organic chemicals |
Fluorodeoxycytidine resistance | nupG | Resistance to biological and organic chemicals |
Fluoro(5)deoxyuridine resistance | tdk | Resistance to biological and organic chemicals |
Fluorodeoxyuridine resistance | nupC | Resistance to biological and organic chemicals |
Fluorodeoxyuridine resistance | nupG | Resistance to biological and organic chemicals |
Fluorodeoxyuridine + uracil resistance in deoA | tdk | Resistance to biological and organic chemicals |
Fluoro(2)-L-erythrocitrate resistance | tct | Resistance to biological and organic chemicals |
Fluoro-3-hydroxyacetone resistance in uhp(Con) | uhpT | Resistance to biological and organic chemicals |
Fluorohydroxyacetone phosphate resistance | ugpAB | Resistance to biological and organic chemicals |
Fluorohydroxyacetone phosphate resistance | glpT | Resistance to biological and organic chemicals |
Fluoro(3)malate resistance | dct | Resistance to biological and organic chemicals |
Fluoro(5)orotic acid resistance | pyrF | Resistance to biological and organic chemicals |
Fluoro(5)orotic acid resistance | pyrH | Resistance to biological and organic chemicals |
Fluoro(4)phenylalanine resistance | tyrR | Resistance to biological and organic chemicals |
Fluoro(4)phenylalanine resistance | pheA | Resistance to biological and organic chemicals |
Fluoro(4)phenylalanine resistance | pheR | Resistance to biological and organic chemicals |
Fluoro(4)phenylalanine resistance | pheS | Resistance to biological and organic chemicals |
Fluoro(4)phenylalanine resistance | pheU | Resistance to biological and organic chemicals |
Fluorophenylalanine resistance | aroF | Resistance to biological and organic chemicals |
Fluorophenylalanine resistance | aroG | Resistance to biological and organic chemicals |
Fluorophenylalanine resistance | aroP | Resistance to biological and organic chemicals |
Fluorophenylalanine resistance | tyrA | Resistance to biological and organic chemicals |
Fluoro(5)tryptophan resistance | aroP | Resistance to biological and organic chemicals |
Fluoro(6)tryptophan resistance | trp (generic) | Resistance to biological and organic chemicals |
Fluorotyrosine resistance | tyrR | Resistance to biological and organic chemicals |
Fluorotyrosine resistance | tyrS | Resistance to biological and organic chemicals |
Fluoro(5)uracil + fluoro(5)uridine resistance | guaB | Resistance to biological and organic chemicals |
Fluoro(5)uracil + 5′-AMP resistance in upp | ushA | Resistance to biological and organic chemicals |
Fluoro(5)uracil + 5-fluorouridine resistance in udp | pyrH | Resistance to biological and organic chemicals |
Fluoro(5)uracil + nucleotide resistance | ompF | Resistance to biological and organic chemicals |
Fluoro(5)uracil + nucleotide resistance | ompR | Resistance to biological and organic chemicals |
Fluoro(5)uracil + adenosine resistance | udp | Resistance to biological and organic chemicals |
Fluorouracil + adenosine resistance in upp deoD xapR(Con) | xapA | Resistance to biological and organic chemicals |
Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoT | phoA | Resistance to biological and organic chemicals |
Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoT | phoB | Resistance to biological and organic chemicals |
Fluoro(5)uracil and 3′-AMP resistance | cpdB | Resistance to biological and organic chemicals |
Fluoro(5)uracil + 5′-AMP + 3′-AMP resistance | crp | Resistance to biological and organic chemicals |
Fluoro(5)uracil + carbamylaspartate resistance | ubiF | Resistance to biological and organic chemicals |
Fluoro(5)uracil resistance | upp | Resistance to biological and organic chemicals |
Fluorouracil resistance | nupC | Resistance to biological and organic chemicals |
Fluorouracil resistance | nupG | Resistance to biological and organic chemicals |
Fluorouracil resistance | pyrH | Resistance to biological and organic chemicals |
Fluorouracil resistance | rpoB | Resistance to biological and organic chemicals |
Fluoro(5)uridine + uracil resistance | udk | Resistance to biological and organic chemicals |
Fluoro(5)uridine resistance | udhA | Resistance to biological and organic chemicals |
Fluoro(5)uridine resistance in upp | udk | Resistance to biological and organic chemicals |
Fluorouridine resistance | pyrH | Resistance to biological and organic chemicals |
Fluorouridine resistance | nupC | Resistance to biological and organic chemicals |
Fluorouridine resistance | nupG | Resistance to biological and organic chemicals |
Fosfomycin resistance due to increased gene dosage | murZ | Resistance to biological and organic chemicals |
Fosfomycin + fructose-6-phosphate resistance | pgi | Resistance to biological and organic chemicals |
Fosfomycin resistance | crp | Resistance to biological and organic chemicals |
Fosfomycin resistance | cyaA | Resistance to biological and organic chemicals |
Fosfomycin resistance | glpT | Resistance to biological and organic chemicals |
Fosfomycin resistance | hipA | Resistance to biological and organic chemicals |
Fosfomycin resistance | mrb | Resistance to biological and organic chemicals |
Fosfomycin resistance | ptsI | Resistance to biological and organic chemicals |
Fosfomycin resistance | uhpT | Resistance to biological and organic chemicals |
Fucitol resistance in galactitol-utilizing strains | gatACD | Resistance to biological and organic chemicals |
Fucose + arabinose-supported growth in galP | mglA | Resistance to biological and organic chemicals |
Fucose + arabinose-supported growth in galP | mglB | Resistance to biological and organic chemicals |
Fucose + arabinose-supported growth in galP | mglC | Resistance to biological and organic chemicals |
Fucose resistance (arabinose as C source) | araC | Resistance to biological and organic chemicals |
Fusaric acid resistance of Tn10 insertion mutants | tet | Resistance to biological and organic chemicals |
Fusidic acid resistance | fusA | Resistance to biological and organic chemicals |
Galactose resistance in galE | galK | Resistance to biological and organic chemicals |
Galactose resistance in galT | galK | Resistance to biological and organic chemicals |
Galactose resistance in galU | gal operon | Resistance to biological and organic chemicals |
Galactose resistance in galU | galK | Resistance to biological and organic chemicals |
Galactose resistance in galT+K+E+/galU galT+K+E+ merodiploid | galR | Resistance to biological and organic chemicals |
Galactose utilization in presence of thiomethylglucoside | gal operon | Resistance to biological and organic chemicals |
Gentamicin resistance | rplF | Resistance to biological and organic chemicals |
Gentamicin resistance | ubiF | Resistance to biological and organic chemicals |
Globomicin resistance | dnaE | Resistance to biological and organic chemicals |
Globomicin resistance | lpp | Resistance to biological and organic chemicals |
Glucarate (D) resistance in ppc | garA | Resistance to biological and organic chemicals |
Glucose + gluconate-independent motility | pts (general) | Resistance to biological and organic chemicals |
Glucose-resistant satisfaction of trp by indole + 5-methyltryptophan | tna | Resistance to biological and organic chemicals |
Glutamate (D) resistance in gltS (increased) | gltS | Resistance to biological and organic chemicals |
Glutamine (D) resistance | glnP | Resistance to biological and organic chemicals |
Glutamyl(γ)hydrazide resistance | glnF | Resistance to biological and organic chemicals |
Glutamyl(γ)hydrazide resistance | glnH | Resistance to biological and organic chemicals |
Glutamyl(γ)hydrazide resistance | glnP | Resistance to biological and organic chemicals |
Glutamyl(γ)methyl ester resistance | gltX | Resistance to biological and organic chemicals |
Glutamyl(γ)methyl ester resistance | metJ | Resistance to biological and organic chemicals |
Glutamyl(γ)methyl ester resistance | metK | Resistance to biological and organic chemicals |
Glyceraldehyde (DL) 3-phosphate resistance | glpT | Resistance to biological and organic chemicals |
Glyceraldehyde (L) 3-phosphate resistance in uhp(Con) | uhpT | Resistance to biological and organic chemicals |
Glyceraldehyde (L) resistance | glpF | Resistance to biological and organic chemicals |
Glyceraldehyde (L) resistance | glpK | Resistance to biological and organic chemicals |
Glycerol 3-phosphorothioate resistance | glpT | Resistance to biological and organic chemicals |
Glycine tolerance | qmeACDE | Resistance to biological and organic chemicals |
Glycylglycyl-N-phosphonoacetylornithine resistance | argR | Resistance to biological and organic chemicals |
Glycylleucine resistance | ilvA | Resistance to biological and organic chemicals |
Glycylleucine resistance | ilvB | Resistance to biological and organic chemicals |
Glycylleucine resistance | ilvH | Resistance to biological and organic chemicals |
Glycylleucine resistance | ilvI | Resistance to biological and organic chemicals |
Glycylleucine resistance | oppA | Resistance to biological and organic chemicals |
Glycylleucine resistance in ilv | gleR | Resistance to biological and organic chemicals |
Glycylglycyl histidinol phosphate ester resistance | oppA | Resistance to biological and organic chemicals |
Glycylglycyl-N-phosphonoacetylornithine resistance | oppA | Resistance to biological and organic chemicals |
Glyphosate resistance | aroA | Resistance to biological and organic chemicals |
Hexuronate resistance in eda | uxaBC | Resistance to biological and organic chemicals |
Hexuronate resistance in eda | uxuAB | Resistance to biological and organic chemicals |
Homocysteic acid resistance | gltS | Resistance to biological and organic chemicals |
Hydrazino (α) imidazole propionic acid resistance | argT | Resistance to biological and organic chemicals |
Hydrazino (α) imidazole propionic acid resistance | hisG | Resistance to biological and organic chemicals |
Hydrazino (α) imidazole propionic acid resistance | hisJ | Resistance to biological and organic chemicals |
Hydrazino (α) imidazole propionic acid resistance | hisQ | Resistance to biological and organic chemicals |
Hydrazino (α) imidazole propionic acid resistance in dhuA | hisP | Resistance to biological and organic chemicals |
Hydroxy (β) norvaline resistance | metL | Resistance to biological and organic chemicals |
Hydroxyaspartate resistance | pan | Resistance to biological and organic chemicals |
Hydroxybutylphosphonate resistance in uhp(Con) | uhpT | Resistance to biological and organic chemicals |
Hydroxyurea resistance | nrdA | Resistance to biological and organic chemicals |
Hydroxyurea resistance | nrdB | Resistance to biological and organic chemicals |
Indole acrylic acid resistance | aroT | Resistance to biological and organic chemicals |
Indolmycin resistance | trpS | Resistance to biological and organic chemicals |
Indospicine resistance | argR | Resistance to biological and organic chemicals |
Iodoacetylglucosamine resistance | nagA | Resistance to biological and organic chemicals |
Iodoacetylglucosamine resistance | nagB | Resistance to biological and organic chemicals |
Iodoacetylglucosamine resistance | nagE | Resistance to biological and organic chemicals |
Isoniazid resistance | pdx | Resistance to biological and organic chemicals |
Kanamycin resistance | atpA–atpE | Resistance to biological and organic chemicals |
Kanamycin resistance | cpxA | Resistance to biological and organic chemicals |
Kanamycin resistance | ecfB | Resistance to biological and organic chemicals |
Kanamycin resistance | hemA | Resistance to biological and organic chemicals |
Kanamycin resistance | hemB | Resistance to biological and organic chemicals |
Kanamycin resistance | hemL | Resistance to biological and organic chemicals |
Kanamycin resistance | topA | Resistance to biological and organic chemicals |
Kasugamycin resistance | ksgA | Resistance to biological and organic chemicals |
Kasugamycin resistance | ksgB | Resistance to biological and organic chemicals |
Kasugamycin resistance | ksgC | Resistance to biological and organic chemicals |
Kasugamycin resistance | ksgD | Resistance to biological and organic chemicals |
Kasugamycin resistance | rplK | Resistance to biological and organic chemicals |
Kasugamycin resistance | rplB | Resistance to biological and organic chemicals |
Kasugamycin resistance | rpsN | Resistance to biological and organic chemicals |
Kasugamycin resistance | rpsM | Resistance to biological and organic chemicals |
Kasugamycin resistance | rpsR | Resistance to biological and organic chemicals |
Kasugamycin resistance and dependence | rpsI | Resistance to biological and organic chemicals |
Keto(2)butyrate resistance | ilvA | Resistance to biological and organic chemicals |
Kirromycin resistance | tufAB | Resistance to biological and organic chemicals |
Lambda cII phage + rifampin coresistance | rpoB | Resistance to biological and organic chemicals |
Lambda phage + nalidixic acid resistance | crp | Resistance to biological and organic chemicals |
Lambda phage + nalidixic acid resistance | cyaA | Resistance to biological and organic chemicals |
Levallorphan resistance | lev | Resistance to biological and organic chemicals |
Lincomycin resistance | linB | Resistance to biological and organic chemicals |
Lincomycin resistance | rplN | Resistance to biological and organic chemicals |
Lincomycin resistance | rplO | Resistance to biological and organic chemicals |
Lincomycin resistance | rpsG | Resistance to biological and organic chemicals |
Lithium-resistant use of proline as C source | putP | Resistance to biological and organic chemicals |
Lysine hydroxamate resistance | lysC | Resistance to biological and organic chemicals |
Mecillinam resistance (see beta-lactam resistance) | alaS | Resistance to biological and organic chemicals |
Mecillinam resistance | argS | Resistance to biological and organic chemicals |
Mecillinam resistance | crp | Resistance to biological and organic chemicals |
Mecillinam resistance | cyaA | Resistance to biological and organic chemicals |
Mecillinam resistance | envB | Resistance to biological and organic chemicals |
Mecillinam resistance | mrdA | Resistance to biological and organic chemicals |
Mecillinam resistance | mrdB | Resistance to biological and organic chemicals |
Mecillinam resistance | mreB | Resistance to biological and organic chemicals |
Mecillinam resistance | mreC | Resistance to biological and organic chemicals |
Mecillinam resistance | mreD | Resistance to biological and organic chemicals |
Menadionine resistance | marA | Resistance to biological and organic chemicals |
Mercaptopurine resistance in gpt | hpt | Resistance to biological and organic chemicals |
Methionine sulfoximine + methyl(α)methionine resistance | metJ | Resistance to biological and organic chemicals |
Methionine sulfoximine resistance | asm | Resistance to biological and organic chemicals |
Methionine sulfoximine resistance | glnP | Resistance to biological and organic chemicals |
Methionine sulfoximine resistance | metP | Resistance to biological and organic chemicals |
Methionine sulfoximine resistance in glnG | glnA | Resistance to biological and organic chemicals |
Methylammonium resistance | glnA | Resistance to biological and organic chemicals |
Methyl(3)anthranilate resistance | trpE | Resistance to biological and organic chemicals |
Methyl(3)anthranilate resistance | aroG | Resistance to biological and organic chemicals |
Methyl(α)glutamate resistance in gltS (increased) | gltS | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of lactose | lacIO | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of maltose | malE | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of maltose | malF | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of maltose | malG | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of maltose | malK | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of mannitol + lactose | ptsG | Resistance to biological and organic chemicals |
Methylglucoside(α) resistance | ptsG | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of glycerol in ∆ptsHI | crr | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of lactose in ptsH | lacI, operator | Resistance to biological and organic chemicals |
Methylglucoside(α)-resistant utilization of melibiose | mel | Resistance to biological and organic chemicals |
Methylglyoxal resistance | gsh | Resistance to biological and organic chemicals |
Methyl(2)histidine resistance + aminotriazole resistance | hisR | Resistance to biological and organic chemicals |
Methyl methanesulfonate resistance in lon | sulA | Resistance to biological and organic chemicals |
Methyl methanesulfonate resistance in lon | ftsZ | Resistance to biological and organic chemicals |
Methyl(α)methionine resistance | metA | Resistance to biological and organic chemicals |
Methyl(α)methionine resistance | metD (metP) | Resistance to biological and organic chemicals |
Methyl(α)methionine resistance | metK | Resistance to biological and organic chemicals |
Methyl(6)purine resistance | apt | Resistance to biological and organic chemicals |
Methyl(6)purine + hypoxanthine resistance | purA | Resistance to biological and organic chemicals |
Methyl(o)threonine resistance | brnQ | Resistance to biological and organic chemicals |
Methyl(4)tryptophan resistance in aroP | aroT | Resistance to biological and organic chemicals |
Methyl(5)tryptophan resistance | mtr | Resistance to biological and organic chemicals |
Methyl(5)tryptophan resistance | aroP | Resistance to biological and organic chemicals |
Methyl(5)tryptophan resistance | trp (generic) | Resistance to biological and organic chemicals |
Methyl(5)tryptophan resistance | trpE | Resistance to biological and organic chemicals |
Methyl(5)tryptophan resistance | trpR | Resistance to biological and organic chemicals |
Methyl(5)tryptophan + thienylalanine resistance | aroP | Resistance to biological and organic chemicals |
Methyl viologen resistance | mvrA | Resistance to biological and organic chemicals |
Methyl viologen resistance (multicopy) | mvrC | Resistance to biological and organic chemicals |
Methyl viologen resistance | gor | Resistance to biological and organic chemicals |
Metronidazole resistance | nar (general) | Resistance to biological and organic chemicals |
Microcin B17 resistance | sbmA | Resistance to biological and organic chemicals |
Microcin E492 resistance | semA | Resistance to biological and organic chemicals |
Mitomycin C resistance of lexA(Con) | lexA | Resistance to biological and organic chemicals |
Mocimycin resistance | tufA,B | Resistance to biological and organic chemicals |
Nalidixic acid resistance | hisU | Resistance to biological and organic chemicals |
Nalidixic acid resistance | icdE | Resistance to biological and organic chemicals |
Nalidixic acid tolerance | sloB | Resistance to biological and organic chemicals |
Nalidixic acid resistance | gyrA | Resistance to biological and organic chemicals |
Nalidixic acid resistance | gyrB | Resistance to biological and organic chemicals |
Nalidixic acid resistance | nalB | Resistance to biological and organic chemicals |
Nalidixic acid resistance | nalD | Resistance to biological and organic chemicals |
Nalidixic acid resistance | purB | Resistance to biological and organic chemicals |
Nalidixic acid resistance due to gene dosage | emrB | Resistance to biological and organic chemicals |
Neamine resistance | rpsL | Resistance to biological and organic chemicals |
Neamine resistance | rpsQ | Resistance to biological and organic chemicals |
Neamine resistance | neaB | Resistance to biological and organic chemicals |
Negamycin resistance | prfB | Resistance to biological and organic chemicals |
Neomycin resistance | atpA–atpE | Resistance to biological and organic chemicals |
Neomycin resistance | ecfB | Resistance to biological and organic chemicals |
Neomycin resistance | hemA | Resistance to biological and organic chemicals |
Neomycin resistance | hemC | Resistance to biological and organic chemicals |
Neomycin resistance | hemD | Resistance to biological and organic chemicals |
Neomycin resistance | hemE | Resistance to biological and organic chemicals |
Neomycin resistance | hemG | Resistance to biological and organic chemicals |
Neomycin resistance | metC (ecfA) | Resistance to biological and organic chemicals |
Neomycin resistance | topA | Resistance to biological and organic chemicals |
Neomycin resistance | ubi (generic) | Resistance to biological and organic chemicals |
Neutrophil granule protein resistance | pmrA | Resistance to biological and organic chemicals |
Nitro(4)pyridine N-oxide resistance | proA | Resistance to biological and organic chemicals |
Nitro(4)pyridine N-oxide resistance | proB | Resistance to biological and organic chemicals |
Nitro(o)-phenyl galactoside resistance | lacZ | Resistance to biological and organic chemicals |
Nitro(o)-phenylthiogalactoside resistance | lacY | Resistance to biological and organic chemicals |
Nitro(o)-phenylthiogalactoside resistance in lacI(Con) or lacO(Con) | lacI, operator | Resistance to biological and organic chemicals |
Nitrofurantoin resistance | nfnA | Resistance to biological and organic chemicals |
Nitrofurantoin resistance | nfnB | Resistance to biological and organic chemicals |
Nitrofurantoin resistance in lon | sulA | Resistance to biological and organic chemicals |
Nitrofurantoin resistance in lon | ftsZ | Resistance to biological and organic chemicals |
Nitrofuranzone resistance | nfsA | Resistance to biological and organic chemicals |
Nitrofuranzone resistance | nfsB | Resistance to biological and organic chemicals |
Nitrosoguanidine resistance | ada | Resistance to biological and organic chemicals |
Nitrosoguanidine resistance | gsh (generic) | Resistance to biological and organic chemicals |
Norfloxacin resistance | hipQ | Resistance to biological and organic chemicals |
Norleucine resistance | metJ | Resistance to biological and organic chemicals |
Norleucine resistance | metK | Resistance to biological and organic chemicals |
Norleucine resistance | nol | Resistance to biological and organic chemicals |
Norleucylglycyl glycine resistance | oppA | Resistance to biological and organic chemicals |
Novobiocin resistance | cysB | Resistance to biological and organic chemicals |
Novobiocin resistance | cysE | Resistance to biological and organic chemicals |
Novobiocin resistance | gyrB | Resistance to biological and organic chemicals |
Novobiocin resistance | nov | Resistance to biological and organic chemicals |
Novobiocin resistance | ompA | Resistance to biological and organic chemicals |
Oxolinic acid resistance | gyrA | Resistance to biological and organic chemicals |
Paromycin resistance or dependence | rpsL | Resistance to biological and organic chemicals |
Pentachlorophenol resistance | atpA–atpE | Resistance to biological and organic chemicals |
Penten(4)oate resistance in atoC(Con) | atoC | Resistance to biological and organic chemicals |
Pentylpantothenamide resistance | pan | Resistance to biological and organic chemicals |
Peptide (toxic, valine containing) resistance | pepA | Resistance to biological and organic chemicals |
Peptide (toxic, valine containing) resistance | pepD | Resistance to biological and organic chemicals |
Peptide (toxic, valine containing) resistance | pepN | Resistance to biological and organic chemicals |
Peptide (toxic, valine containing) resistance | pepQ | Resistance to biological and organic chemicals |
Peroxide (organic) resistance | oxyR | Resistance to biological and organic chemicals |
Phaseolotoxin resistance | oppA | Resistance to biological and organic chemicals |
Phenethyl alcohol resistance | dnaB | Resistance to biological and organic chemicals |
Phenethyl alcohol resistance | dnaP | Resistance to biological and organic chemicals |
Phenethyl alcohol resistance | secA | Resistance to biological and organic chemicals |
Phenethylyl galactoside resistance | lacY | Resistance to biological and organic chemicals |
Phenethylyl galactoside resistance | lacZ | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacP lacI(nonsense) supE | hisT | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacP lacI(nonsense) supE | prfA | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacP lacI(nonsense) supE | rpsL | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supL | lysS | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supL | strM | Resistance to biological and organic chemicals |
Phenyl galactoside resistance of lacI q/lacP lacI(nonsense) supL | trmE | Resistance to biological and organic chemicals |
Phenyl galactoside resistance | lacY | Resistance to biological and organic chemicals |
Phenyl galactoside resistance | lacZ | Resistance to biological and organic chemicals |
Phenylalanylleucine resistance | ilvB | Resistance to biological and organic chemicals |
Phenylalanylleucine resistance | ilvH | Resistance to biological and organic chemicals |
Phenylalanylleucine resistance | ilvI | Resistance to biological and organic chemicals |
Plasmid maintenance | polA | Resistance to biological and organic chemicals |
Polymyxin resistance | pmrA | Resistance to biological and organic chemicals |
Promethazine resistance | lon | Resistance to biological and organic chemicals |
Pseudomonic acid resistance | ileS | Resistance to biological and organic chemicals |
Psicofuranine resistance | guaAB | Resistance to biological and organic chemicals |
Psoralen + UV irradiation resistance | puvA | Resistance to biological and organic chemicals |
Pyrithiamine resistance | thi | Resistance to biological and organic chemicals |
Quinaldic acid resistance of Tn10 insertion mutants | tet | Resistance to biological and organic chemicals |
Quinolone resistance | gyrA | Resistance to biological and organic chemicals |
Ribitol resistance in araC(Con) | araB | Resistance to biological and organic chemicals |
Ribitol resistance in araC(Con) | araC | Resistance to biological and organic chemicals |
Rifampin + kasugamycin dependence | ridA | Resistance to biological and organic chemicals |
Rifampin dependence | ridB | Resistance to biological and organic chemicals |
Rifampin resistance | crp | Resistance to biological and organic chemicals |
Rifampin resistance | cyaA | Resistance to biological and organic chemicals |
Rifampin resistance | rpoB | Resistance to biological and organic chemicals |
Rifampin resistance in rpoB+/rpoB (rif) diploids | rpoB | Resistance to biological and organic chemicals |
Salicylate resistance | pan | Resistance to biological and organic chemicals |
Serine (D) resistance | cycA | Resistance to biological and organic chemicals |
Serine + methionine + glycine resistance in relA | glyA | Resistance to biological and organic chemicals |
Serine hydroxamate resistance | serA | Resistance to biological and organic chemicals |
Serine hydroxamate resistance | serS | Resistance to biological and organic chemicals |
Serine resistance | sbaA | Resistance to biological and organic chemicals |
Serine resistance | thrA | Resistance to biological and organic chemicals |
Serine resistance in relA | crp | Resistance to biological and organic chemicals |
Serine resistance in relA | cyaA | Resistance to biological and organic chemicals |
Serine resistance in relA | relA | Resistance to biological and organic chemicals |
Serine resistance in relA | rpoB | Resistance to biological and organic chemicals |
Serine resistance in relA | rpoC | Resistance to biological and organic chemicals |
Showdomycin resistance | nupC | Resistance to biological and organic chemicals |
Showdomycin resistance | pnp | Resistance to biological and organic chemicals |
Siderophore–beta-lactam conjugate resistance | cirA | Resistance to biological and organic chemicals |
Sorbitol + xylitol resistance | srlA | Resistance to biological and organic chemicals |
Sorbose (L) resistance | fruA | Resistance to biological and organic chemicals |
Sorbose resistance | ptsG | Resistance to biological and organic chemicals |
Spectinomycin resistance | rpsE | Resistance to biological and organic chemicals |
Spectinomycin resistance | rrn | Resistance to biological and organic chemicals |
Spectinomycin resistance | spcB | Resistance to biological and organic chemicals |
Spectinomycin resistance and sucrose dependence | rpsC | Resistance to biological and organic chemicals |
Spectinomycin resistance and sucrose dependence | rpsD | Resistance to biological and organic chemicals |
Spectinomycin resistance and sucrose dependence | rpsE | Resistance to biological and organic chemicals |
Streptolydigin resistance | rpoB | Resistance to biological and organic chemicals |
Streptomycin + cAMP resistance | crp | Resistance to biological and organic chemicals |
Streptomycin resistance | hem (generic) | Resistance to biological and organic chemicals |
Streptomycin resistance | rpsL | Resistance to biological and organic chemicals |
Streptomycin resistance | strB | Resistance to biological and organic chemicals |
Streptomycin resistance | strC | Resistance to biological and organic chemicals |
Streptomycin resistance | strM | Resistance to biological and organic chemicals |
Streptomycin resistance | ubiF | Resistance to biological and organic chemicals |
Streptomycin resistance | mut (generic) | Resistance to biological and organic chemicals |
Streptomycin resistance | topA | Resistance to biological and organic chemicals |
Streptovaricin resistance | rpoB | Resistance to biological and organic chemicals |
Streptozotocin resistance | fba | Resistance to biological and organic chemicals |
Streptozotocin resistance | galT | Resistance to biological and organic chemicals |
Streptozotocin resistance | manA | Resistance to biological and organic chemicals |
Streptozotocin resistance | nagA | Resistance to biological and organic chemicals |
Streptozotocin resistance | nagE | Resistance to biological and organic chemicals |
Streptozotocin resistance | pfkA | Resistance to biological and organic chemicals |
Streptozotocin resistance | ptsI | Resistance to biological and organic chemicals |
Streptozotocin resistance | glpD | Resistance to biological and organic chemicals |
Sulfanilamide + hypoxanthine resistance | hpt | Resistance to biological and organic chemicals |
Sulfanilamide + hypoxanthine resistance | pspABCDE | Resistance to biological and organic chemicals |
Sulfanilamide resistance | folP | Resistance to biological and organic chemicals |
Sulfanilamide resistance | gpt | Resistance to biological and organic chemicals |
Sulfometuron methyl + valine resistance | ilv structural genes | Resistance to biological and organic chemicals |
Sulfometuron methyl + valine resistance | ilvG | Resistance to biological and organic chemicals |
Sulfonamide resistance | folA | Resistance to biological and organic chemicals |
Sulfonamide resistance | pab | Resistance to biological and organic chemicals |
Tartrate resistance | dct | Resistance to biological and organic chemicals |
Tetracycline resistance | cmlA | Resistance to biological and organic chemicals |
Tetracycline resistance | marA | Resistance to biological and organic chemicals |
Tetracycline resistance | ompF | Resistance to biological and organic chemicals |
Thiaisoleucine resistance | ileS | Resistance to biological and organic chemicals |
Thiaisoleucine resistance | ilvU | Resistance to biological and organic chemicals |
Thialysine resistance | thrA | Resistance to biological and organic chemicals |
Thiazolealanine resistance | hisG | Resistance to biological and organic chemicals |
Thiazolealanine resistance | hisR | Resistance to biological and organic chemicals |
Thienylalanine resistance | aroP | Resistance to biological and organic chemicals |
Thienylalanine resistance | aroG | Resistance to biological and organic chemicals |
Thiodigalactoside resistance | lacY | Resistance to biological and organic chemicals |
Thio(5)glucose resistance | crr | Resistance to biological and organic chemicals |
Thiolactomycin resistance | emrB | Resistance to biological and organic chemicals |
Thiolactomycin resistance (due to gene dosage) | fadB | Resistance to biological and organic chemicals |
Thiolactomycin resistance (due to gene dosage) | emrB | Resistance to biological and organic chemicals |
Thiolutin resistance | tlnA | Resistance to biological and organic chemicals |
Thiomaltose resistance | lamB | Resistance to biological and organic chemicals |
Thiomaltose resistance | malE | Resistance to biological and organic chemicals |
Thiomaltose resistance | malF | Resistance to biological and organic chemicals |
Thiomaltose resistance | malG | Resistance to biological and organic chemicals |
Thiomaltose resistance | malK | Resistance to biological and organic chemicals |
Thiomaltose resistance | malT | Resistance to biological and organic chemicals |
Thiomethylgalactoside-independent utilization of galactose in galR(Con) | galR | Resistance to biological and organic chemicals |
Thiopeptin resistance | rplE | Resistance to biological and organic chemicals |
Thiosine resistance | argP | Resistance to biological and organic chemicals |
Thymidine resistance in deoC | deoA | Resistance to biological and organic chemicals |
Thymidine resistance in deoC | deoB | Resistance to biological and organic chemicals |
Thymineless death prevention by low thymine levels in thyA | deoB | Resistance to biological and organic chemicals |
Thymineless death prevention by low thymine levels in thyA | deoC | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | recF | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | recJ | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | recO | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | recQ | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | alaS | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | pheS | Resistance to biological and organic chemicals |
Thymineless death resistance in thyA | valS | Resistance to biological and organic chemicals |
Tiamulin resistance | rplC | Resistance to biological and organic chemicals |
Tiamulin resistance | rplD | Resistance to biological and organic chemicals |
Triazole resistance | cysB | Resistance to biological and organic chemicals |
Triazole resistance | cysE | Resistance to biological and organic chemicals |
Triazole resistance | cysG | Resistance to biological and organic chemicals |
Triazole resistance | trzA | Resistance to biological and organic chemicals |
Triazole resistance in cysM | cysB | Resistance to biological and organic chemicals |
Triazole resistance in cysM | cysE | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | gyrA | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | gyrB | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | his structural genes | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | hisR | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | hisS | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | hisT | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | hisU | Resistance to biological and organic chemicals |
Triazolealanine + aminotriazole resistance | hisW | Resistance to biological and organic chemicals |
Trifluorocitrate resistance | tct | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | flrB | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | ileR | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | leuA | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | leuJ | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | leu (generic) | Resistance to biological and organic chemicals |
Trifluoroleucine resistance | leuS | Resistance to biological and organic chemicals |
Trilysine resistance | oppA | Resistance to biological and organic chemicals |
Trimethoprim resistance | folA | Resistance to biological and organic chemicals |
Trimethoprim resistance | thyA | Resistance to biological and organic chemicals |
Triornithine resistance | oppA | Resistance to biological and organic chemicals |
Triornithine resistance in opp | tpp | Resistance to biological and organic chemicals |
Tripeptide (toxic amino acid containing) resistance | oppAE | Resistance to biological and organic chemicals |
Tripeptide (toxic amino acid containing) resistance | tppA | Resistance to biological and organic chemicals |
Tripeptide (toxic amino acid containing) resistance | tppB | Resistance to biological and organic chemicals |
Tryptophan analog resistance | aroH | Resistance to biological and organic chemicals |
Uncoupler resistances | atpA–atpE | Resistance to biological and organic chemicals |
Uridine resistance of thyA deoB | deoR | Resistance to biological and organic chemicals |
Valine resistance | ilv structural genes | Resistance to biological and organic chemicals |
Valine resistance | ilvB | Resistance to biological and organic chemicals |
Valine resistance | ilvF | Resistance to biological and organic chemicals |
Valine resistance | ilvG | Resistance to biological and organic chemicals |
Valine resistance | ilvH | Resistance to biological and organic chemicals |
Valine resistance | ilvI | Resistance to biological and organic chemicals |
Valine resistance | ilvJ | Resistance to biological and organic chemicals |
Valine resistance | livG | Resistance to biological and organic chemicals |
Valine resistance | livH | Resistance to biological and organic chemicals |
Valine resistance | livJ | Resistance to biological and organic chemicals |
Valine resistance | livK | Resistance to biological and organic chemicals |
Valine resistance | brnQ | Resistance to biological and organic chemicals |
Vinylglycolate resistance | dld | Resistance to biological and organic chemicals |
Vinylglycolate resistance | lct | Resistance to biological and organic chemicals |
Xylitol resistance | fruA | Resistance to biological and organic chemicals |
Xylose resistance in fda | xylE | Resistance to biological and organic chemicals |
Xylose (D) + cAMP resistance | cxm | Resistance to biological and organic chemicals |
9NA phage resistance | pmi | Resistance to biological agents |
9NA phage resistance in galE | kdsA | Resistance to biological agents |
Bf23 phage resistance | btuB | Resistance to biological agents |
C21 phage resistance | rfaD | Resistance to biological agents |
Chi phage resistance | fliC (hag) | Resistance to biological agents |
Chi phage resistance | motA | Resistance to biological agents |
Chi phage resistance | motB | Resistance to biological agents |
ES18 phage resistance | fhuA | Resistance to biological agents |
ES18 phage resistance | prbA,B | Resistance to biological agents |
ES18 phage resistance | sidK | Resistance to biological agents |
ES18 phage resistance | tonB | Resistance to biological agents |
Felix O phage resistance | galE | Resistance to biological agents |
Felix O phage resistance | galU | Resistance to biological agents |
Felix O phage resistance | rfaC,D,E,F,H | Resistance to biological agents |
Filamentous phage tolerance | tolR | Resistance to biological agents |
Filamentous phage tolerance | tolQ | Resistance to biological agents |
HK009 phage resistance | prh | Resistance to biological agents |
HK068 phage resistance | prk | Resistance to biological agents |
Host range phage (from Serratia marcescens) resistance | ompC | Resistance to biological agents |
K10 phage resistance | lamB | Resistance to biological agents |
K3 phage resistance | ompA | Resistance to biological agents |
Lambda + 434 phage resistance | mopA | Resistance to biological agents |
Lambda + 434 phage resistance | mopB | Resistance to biological agents |
Lambda cII + rifampin coresistance | rpoB | Resistance to biological agents |
Lambda mutant infection resistance | gyrB (hisW) | Resistance to biological agents |
Lambda mutant phage infection, survival of | himA | Resistance to biological agents |
Lambda mutant phage resistance | hflC | Resistance to biological agents |
Lambda mutant phage resistance | hflK | Resistance to biological agents |
Lambda mutant phage resistance | hflX | Resistance to biological agents |
Lambda mutant prophage induction, survival of | grpD | Resistance to biological agents |
Lambda mutant prophage induction, survival of | grpE | Resistance to biological agents |
Lambda phage + nalidixic acid resistance | crp | Resistance to biological agents |
Lambda phage + nalidixic acid resistance | cyaA | Resistance to biological agents |
Lambda phage + 434 phage cross-resistance | rpoB | Resistance to biological agents |
Lambda phage gamma mutant resistance | polA | Resistance to biological agents |
Lambda phage induction, resistance to | dnaJ | Resistance to biological agents |
Lambda phage induction, resistance to | dnaK | Resistance to biological agents |
Lambda phage resistance | envZ | Resistance to biological agents |
Lambda phage resistance | gprAB | Resistance to biological agents |
Lambda phage resistance | lamB | Resistance to biological agents |
Lambda phage resistance | malK | Resistance to biological agents |
Lambda phage resistance | malT | Resistance to biological agents |
Lambda phage resistance | rap | Resistance to biological agents |
Lambda phage resistance with maltose and arabinose as C sources | crp | Resistance to biological agents |
Lambda phage resistance with maltose and arabinose as C sources | cyaA | Resistance to biological agents |
Lambda prophage induction deficiency during thymine deprivation | recA | Resistance to biological agents |
Lambda prophage induction, resistance to | rpsJ | Resistance to biological agents |
Lambda prophage induction, resistance to | rpsM | Resistance to biological agents |
Lambda prophage induction, survival of | nusA | Resistance to biological agents |
Lambda prophage induction, survival of | nusB | Resistance to biological agents |
Lambda sus N7 nin-5 resistance in P2 lysogen | rho | Resistance to biological agents |
Lambda vir resistance after infection with heteromodified lambda cI857 | hsd | Resistance to biological agents |
Lambdoid phage resistance | nusB | Resistance to biological agents |
Lambdoid phage mixture coinfection resistance | dnaB | Resistance to biological agents |
Lambdoid phage mixture coinfection resistance | dnaJ | Resistance to biological agents |
Lambdoid phage mixture coinfection resistance | dnaK | Resistance to biological agents |
Lambda cI71 resistance | rpoD | Resistance to biological agents |
Lambda Nmar mutant phage resistance | rpoB | Resistance to biological agents |
Male-specific phage resistance | arcA (fexA) | Resistance to biological agents |
Me1 phage resistance | envZ | Resistance to biological agents |
Me1 phage resistance | ompC | Resistance to biological agents |
Me1 phage resistance | ompF | Resistance to biological agents |
Me1 phage resistance | ompR | Resistance to biological agents |
Mu phage lytic growth resistance | himA | Resistance to biological agents |
Mu phage lytic growth resistance | himD | Resistance to biological agents |
Mu prophage induction, survival of | himA | Resistance to biological agents |
Mu prophage induction, survival of | himD | Resistance to biological agents |
N4 phage resistance | manXYZ | Resistance to biological agents |
Ox2 phage resistance | ompA | Resistance to biological agents |
P1 phage resistance | galE | Resistance to biological agents |
P1 phage resistance | galU | Resistance to biological agents |
P1 phage resistance | lpcA | Resistance to biological agents |
P1 phage resistance | rfaD | Resistance to biological agents |
P1 phage specialized transduction of drug resistance to Salmonella sp. | sspA | Resistance to biological agents |
P2 vir1 phage resistance | rpoA | Resistance to biological agents |
P2 phage + lambda phage coinfection resistance | dnaJ | Resistance to biological agents |
P2 phage + lambda phage coinfection resistance | dnaK | Resistance to biological agents |
P2 phage resistance | rep | Resistance to biological agents |
P22 phage resistance | galE | Resistance to biological agents |
P22 phage resistance | pmi | Resistance to biological agents |
P221 phage resistance | praAB | Resistance to biological agents |
PH105 phage resistance | ompB (ompR of E. coli) | Resistance to biological agents |
PH105 phage resistance | ompC | Resistance to biological agents |
PH105 phage resistance | ompF | Resistance to biological agents |
PH105 phage resistance | praAB | Resistance to biological agents |
PH51 phage resistance | ompB (ompR of E. coli) | Resistance to biological agents |
PH51 phage resistance | ompC | Resistance to biological agents |
PH51 phage resistance | ompF | Resistance to biological agents |
PH51 phage resistance | praAB | Resistance to biological agents |
PH51 phage resistance | prdB | Resistance to biological agents |
φX174 phage resistance | phxB | Resistance to biological agents |
φ80 phage resistance | fhuA | Resistance to biological agents |
φ80 phage resistance | tonB | Resistance to biological agents |
Q phage resistance | cpxA (ecfB, ssd, eup) | Resistance to biological agents |
T-even phage resistance | ompA | Resistance to biological agents |
T1 phage (UV irradiated) resistance | phr | Resistance to biological agents |
T1 phage resistance | fhuA | Resistance to biological agents |
T1 phage resistance | tonB | Resistance to biological agents |
T2 phage resistance in ompF+ or ompF | fadL | Resistance to biological agents |
T3 phage resistance | lpcA | Resistance to biological agents |
T4 mutant phage resistance | lit | Resistance to biological agents |
T4 phage lig mutant nibbling of colonies yielding lig-overproducing strain | lig | Resistance to biological agents |
T4 phage lig mutant resistance from lig-overproducing strain | lig | Resistance to biological agents |
T4 phage resistance | lpcA | Resistance to biological agents |
T4 phage resistance | lpcB | Resistance to biological agents |
T4 phage resistance | mopA | Resistance to biological agents |
T4 phage resistance | mopB | Resistance to biological agents |
T4 phage resistance | rho | Resistance to biological agents |
T4 phage resistance | tabC | Resistance to biological agents |
T4 phage resistance | lit | Resistance to biological agents |
T4 phage (uracil containing) resistance | ung | Resistance to biological agents |
T5 phage resistance | fhuA | Resistance to biological agents |
T6 phage resistance | crp | Resistance to biological agents |
T6 phage resistance | cyaA | Resistance to biological agents |
T6 phage resistance | tsx | Resistance to biological agents |
T7 phage gene 1.2 mutant resistance | optA | Resistance to biological agents |
T7 phage gene 2 resistance | rpoC | Resistance to biological agents |
T7 phage resistance | groM | Resistance to biological agents |
T7 phage resistance | lpcA | Resistance to biological agents |
T7 phage resistance | lpcB | Resistance to biological agents |
T7 phage resistance | rpoB | Resistance to biological agents |
T7 phage resistance | trxA | Resistance to biological agents |
TC45 phage resistance | phoB | Resistance to biological agents |
TC45 phage resistance | phoE | Resistance to biological agents |
TC45 phage resistance | phoR | Resistance to biological agents |
TC45 phage resistance | phoS | Resistance to biological agents |
TC45 phage resistance | phoT | Resistance to biological agents |
TC45 phage resistance | pstABCS | Resistance to biological agents |
TP1 phage resistance | envZ | Resistance to biological agents |
TuIa phage resistance | envZ | Resistance to biological agents |
TuIa phage resistance | ompC | Resistance to biological agents |
TuIa phage resistance | ompF | Resistance to biological agents |
TuIa phage resistance | ompR | Resistance to biological agents |
TuIa phage resistance | tolQAB | Resistance to biological agents |
TuIb phage resistance | ompF | Resistance to biological agents |
TuII* phage resistance | ompA | Resistance to biological agents |
U3 phage + K3 phage coresistance | rfaP | Resistance to biological agents |
U3 phage resistance | galE | Resistance to biological agents |
U3 phage resistance | galU | Resistance to biological agents |
U3 phage resistance | pgi | Resistance to biological agents |
U3 phage resistance | pgm | Resistance to biological agents |
U3 phage resistance | rfa (general) | Resistance to biological agents |
UV-irradiated lytic phage resistance | uvrA | Resistance to biological agents |
UV-irradiated lytic phage resistance | uvrB | Resistance to biological agents |
UV-irradiated lytic phage resistance | uvrC | Resistance to biological agents |
UV-irradiated lytic phage resistance | uvrD | Resistance to biological agents |
Cold resistance in rpsE cold-sensitive mutants | rpsB | Resistance to physical extremes |
Cold-resistant growth | crg | Resistance to physical extremes |
Filter retention | fts (generic) | Resistance to physical extremes |
Freeze-thaw resistance | envZ | Resistance to physical extremes |
Gamma irradiation resistance | garA | Resistance to physical extremes |
Gamma irradiation resistance | garB | Resistance to physical extremes |
Growth at 42°C in his-overexpressing strain | his structural genes | Resistance to physical extremes |
Near-UV irradiation resistance | nuvA | Resistance to physical extremes |
Near-UV irradiation resistance | nuvC | Resistance to physical extremes |
Near-UV irradiation resistance | relA | Resistance to physical extremes |
Osmotolerance | crp | Resistance to physical extremes |
Osmotolerance | cyaA | Resistance to physical extremes |
Osmotolerance | osmB | Resistance to physical extremes |
Osmotolerance | proA | Resistance to physical extremes |
Osmotolerance | proB | Resistance to physical extremes |
Phage (UV-irradiated T1) resistance | phr | Resistance to physical extremes |
Psoralen + UV irradiation resistance | puvA | Resistance to physical extremes |
Temperature resistance in rpoD (Ts) | rpoH | Resistance to physical extremes |
Thermotolerance | gyrA | Resistance to physical extremes |
UV light resistance | crp | Resistance to physical extremes |
UV light resistance | cyaA | Resistance to physical extremes |
UV light resistance | envB | Resistance to physical extremes |
UV light resistance | relA | Resistance to physical extremes |
UV irradiation resistance in lon | sulA | Resistance to physical extremes |
UV irradiation resistance in lon | ftsZ | Resistance to physical extremes |
UV light + bromodeoxyuridine resistance | tdk | Resistance to physical extremes |
UV light + bromodeoxyuridine resistance | ung | Resistance to physical extremes |
UV light + psoralen resistance | puvA | Resistance to physical extremes |
UV-irradiated lytic phage resistance | uvrA | Resistance to physical extremes |
UV-irradiated lytic phage resistance | uvrB | Resistance to physical extremes |
UV-irradiated lytic phage resistance | uvrC | Resistance to physical extremes |
UV-irradiated lytic phage resistance | uvrD | Resistance to physical extremes |
Migration in a chemical gradient | che | Movement |
Static cultivation (prolonged) | fliC | Movement |
Gene | Organism | Selection | References | Alteration* |
---|---|---|---|---|
ackA | E, S | Fluoroacetate resistance | 96 281 463 797 | L |
ada | E | Nitrosoguanidine resistance | 693 | |
add | E | Deoxyadenosine + hypoxanthine satisfaction of purB requirement | 370 | L |
add | S | Deoxyadenosine (low) satisfaction of purA requirement | 326 | L |
adhCE | E | Chloracetaldehyde resistance | 157 | |
adhCE | E | Chlorethanol resistance | 157 | |
adhE | E | Allyl alcohol resistance | 476 | L |
adh | E | Ethanol as C source | 132 | C |
alaS | E | Thymineless death resistance in thyA | 394 | S |
alaS | E | Mecillinam resistance (beta-lactam resistance) | 802 | S |
ampC | E | Ampicillin resistance | 139 570 | D |
ampC | E | Ampicillin resistance | 210 212 362 | C |
amtAB | S | Aminotriazole resistance | 828 | |
apeA | E, S | N-Acetyl-L-phenylalanine-β-naphthyl ester hydrolysis | 421 516 | L |
apt | E | 6-Methylpurine resistance | 60 | L |
apt | E | Adenine resistance in hpt gpt | 462 | |
apt | E | 2,6-Diaminopurine resistance in pnp | 470 | L |
apt | E, S | 2,6-Diaminopurine resistance | 107 390 | L |
araB | E | Ribitol resistance from araC(Con) | 396 | L |
araC | E | Fucose resistance (arabinose as C source) | 67 | C |
araC | E | Ribitol resistance from araC(Con) | 396 | L |
arcA | E | Male-specific phage resistance, also called fexA | 110 651 711 | L |
argA | E | Acetylornithine + uracil satisfaction of car (pyrA) | 153 | L |
argB | E | N-Acetylhistidine + ornithine satisfaction of his | 50 | C |
argB | E | Acetylornithine + uracil satisfaction of car (pyrA) | 153 | L |
argC | E | N-Acetylhistidine + ornithine satisfaction of his | 50 | C |
argC | E | Acetylornithine + uracil satisfaction of car (pyrA) | 153 | L |
argD | E, S | Proline-independent growth of ∆proAB | 62 403 | L |
argD | E | Acetylornithine + uracil satisfaction of car (pyrA) | 153 | L |
argE | E | N-Acetylhistidine + ornithine satisfaction of his | 50 | C |
argE | E | Acetylnorvaline resistance in argR(Con) | 402 | L |
argH | E | N-Acetylhistidine + ornithine satisfaction of his | 50 | C |
argP | E | Canavanine resistance | 483 655 | L |
argP | E | Thiosine resistance | 293 716 | L |
argP | E | Canavanine + thiouracil resistance | 605 | L |
argR | E, S | Arginine-resistant, proline-independent growth of ∆pro | 62 403 | C |
argR | E | Acetylhistidine satisfaction of his | 49 50 403 | C |
argR | E | Acetylmethionine satisfaction of met | 402 | C |
argR | E | Indospicine resistance | 454 | C |
argR | E | Canavanine resistance | 482 523 | C |
argR | E | Glycylglycyl-N-phosphonoacetylornithine resistance | 604 | C |
argR | E | Canavanine + azauracil resistance | 605 | C |
argR | E | Canavanine + thiouracil resistance | 605 | C |
argR | E | Acetylnorvaline resistance in argR(Con) | 402 | |
argS | E | Canavanine resistance | 322 | S |
argS | E | Mecillinam resistance (beta-lactam resistance) | 802 | S |
argT | S | Hydrazino (α) imidazole propionic acid resistance | 432 433 | |
aroA | E, S | Glyphosate resistance | 512 731 869 | C, D |
aroF | E | Amino(4)phenylalanine resistance | 504 | C |
aroF | S | Fluoro(4)phenylalanine resistance | 270 729 | C |
aroG | E, S | Methyl(3)anthranilate resistance | 307 | FBI, S |
aroG | E | Thienylalanine resistance | 215 | FBI, S |
aroG | E | Fluorophenylalanine resistance | 351 | FBI, S |
aroH | E | Tryptophan analog resistance | 637 | FBI, S |
aroP | E, S | Methyl(5)tryptophan resistance | 12 94 288 303 393 437 438 439 | L, C |
aroP | E, S | Fluoro(5)tryptophan resistance | 12 94 288 303 393 437 438 439 | L |
aroP | E, S | Azaserine resistance | 12 94 288 303 393 437 438 439 836 837 | L |
aroP | E, S | Thienylalanine resistance | 12 94 288 303 393 437 438 439 | L |
aroP | E, S | Fluorophenylalanine resistance | 12 94 288 303 393 437 438 439 | L |
aroP | E, S | Azaleucine resistance | 12 94 288 303 393 437 438 439 | L |
aroP | E, S | Methyl(5)tryptophan + thienylalanaine resistance | 12 94 288 303 393 437 438 439 | L |
aroT | E, S | Indole acrylic acid resistance | 769 | L |
aroT | E | Methyl(4)tryptophan resistance in aroP | 594 | L |
asm | S | Methionine sulfoxamine resistance | 188 | |
atoB | S | Dinitropyrene resistance | 590 | L |
atoC | E | Butyrate as C source in fadR(Con) | 602 | C |
atoC | E | Valerate as C source in fadR(Con) | 602 | C |
atoC | E | Penten(4)oate resistance in atoC(Con) | 669 | L |
atpA-atpE | E | Uncoupler resistances, including DCCD | 225 226 229 355 537 | L |
atpA-atpE | E | Tributyl tin resistance | 355 | |
atpA-atpE | E | CCCP resistance | 355 | |
atpA-atpE | E | Pentachlorophenol resistance | 355 | |
atpA-atpE | E | Auroventin resistance | 451 685 818 | L |
atpA-atpE | E | Kanamycin resistance | 768 | L |
atpA-atpE | E | Neomycin resistance | 392 | L |
atpA-atpE | E | Azide resistance | 355 | |
atr | S | Acid resistance | 233 | |
azaAB | E | Azaserine resistance | 836 | |
azl | E | Azaleucine resistance | 610 | |
bglBC | E | Arbutin as C source | 523 616 640 | |
bglBC | E | Salicin as C source | 523 616 640 | |
bglT | E | Methyl(β)glucoside as C source | 686 | C |
bio operon | E | Dehydrobiotin resistance | 206 | |
bioP | E | Dehydrobiotin resistance | 206 | L |
birA | E | Dehydrobiotin resistance | 206 597 | |
brnQ | E | Methyl(o)threonine resistance | 278 | L |
brnQ | E | Valine resistance | 277 | L |
btuB | E | Colicin E3 tolerance | 46 47 109 284 388 620 | |
btuB | E, S | Bf23 phage resistance | 46 47 109 284 388 528 620 | |
bymA | E | Maltose utilization in malT | 327 | |
cbt | E | Chloroacetate(β) resistance | 68 | L |
cbt | E | Colicin B tolerance | 623 | L |
cbt | E | Colicin D tolerance | 623 | L |
cdd | E | Aza(5)-2′-deoxycytidine resistance | 196 | L |
cdd | E, S | Fluoro(5)deoxycytidine resistance | 53 579 | L |
celABCDF | E | Cellobiose as C source | 426 | |
cet | E | Colicin E2 tolerance | 201 | |
che | S | Migration in a chemotaxis gradient | 34 | |
chlABDEG | E, S | Chlorate resistance | 2 121 122 228 266 523 743 744 | L |
chlABDE | E | Lactate + fumarate as anaerobic energy source | 436 | L |
chlC | S | Chlorate resistance | 45 | L |
chlE | E | Lactate + nitrate as anaerobic energy source | 799 | |
chlE | E | Biotin sulfoxide utilization in chl bio | 180 | |
cirA | E | Colicin I resistance | 77 93 620 | L |
cirA | E | Siderophore-beta-lactam conjugate resistance | 93 | L |
cit | E | Citrate as C source | 290 | |
cls | E | Dihydroxy(3,4)butyl-1-phosphonate resistance | 345 | L |
cmlA | E | Chloramphenicol resistance | 48 | |
cmlA | E | Tetracycline resistance | 523 638 | |
coaA | E | Coenzyme A feedback resistance | 789 790 | FBI, S |
codA(cod) | E, S | Fluoro(5)cytosine resistance | 4 54 | L |
corABCD | E, S | Cobalt resistance | 262 600 817 | |
corABCD | E | Manganese resistance | 600 | |
corABCD | E | Nickel resistance | 817 | |
cpd | S | Succinate as improved C source | 8 530 | L |
cpd | S | Citrate as C source in presence of low cAMP | 8 | L |
cpdB | E | Fluorouracil(5) and 3′-AMP resistance | 51 | L |
cpxA | E | Amikacin resistance | 629 | |
cpxA | E | Colicin A tolerance | 629 | |
cpxA | E | Kanamycin resistance | 768 | |
cpxA | E | Q phage resistance | 508 711 | |
cpxA | E | Serine (L) as C source | 567 | |
crg | E | Cold-resistant growth | 398 | |
crp | S | Fosfomycin resistance | 10 | L |
crp | E | Serine (L) resistance in relA | 167 | L |
crp | E | Lambda phage + nalidixic acid resistance | 429 | L |
crp | E | Streptomycin + cAMP resistance | 31 | L |
crp | E | Lambda phage resistance with maltose and arabinose as C sources | 92 766 | L |
crp | E | cAMP + glucose 6-phosphate resistance | 1a | L |
crp | E | cAMP + glucose 6-phosphate + D-xylose + L-arabinose resistance | 1a | L |
crp | E | Fluorouracil(5) + 5′-AMP + 3′-AMP resistance | 52 | L |
crp | E | Osmotolerance | 282 | L |
crp | E | Beta-lactam resistance | 362 | L |
crp | E | Mecillinam resistance | 25 168 857 | L |
crp | E | UV light resistance | 627 | L |
crp | E | Rifampin resistance | 413 | L |
crp | E | T6 phage resistance | 6 | L |
crr | E | Thio(5)glucose resistance | 419 | L |
crr | S | Methylglucoside(α)-resistant utilization of glycerol in ptsHI | 563 | L |
cxm | E | Xylose (D) + cAMP resistance | 1a | L |
cyaA | E | Lambda phage resistance with maltose and arabinose as C sources | 92 | L |
cyaA | E | Lambda phage + nalidixic acid resistance | 429 | L |
cyaA | E | Serine (L) resistance in relA | 167 | L |
cyaA | S | Fosfomycin resistance | 10 | L |
cyaA | E | Osmotolerance | 282 | L |
cyaA | E | Beta-lactam resistance | 362 | L |
cyaA | E | Mecillinam resistance | 25 168 857 | L |
cyaA | E | UV light resistance | 627 | L |
cyaA | E | Rifampin resistance | 413 | L |
cyaA | E | T6 phage resistance | 6 | L |
cycA | E | Cycloserine (D) resistance | 150 646 813 | L |
cycA | E | Serine (D) resistance | 689 | L |
cysA | S | Chromate resistance | 581 | L |
cysA | E | Selenate resistance | 728 | L |
cysA | S | Azaserine resistance | 340 689 | L |
cysB | S | Chromate resistance | 340 | L |
cysB | S | Azide resistance | 227 | C |
cysB | S | Selenate resistance | 339 | L |
cysB | E | Novobiocin resistance | 631 | L |
cysB | S | Triazole resistance | 227 | C |
cysB | S | Azaserine resistance | 340 | L |
cysC | S | Azaserine resistance | 340 | L |
cysC | S | Chromate resistance | 581 | L |
cysD | S | Azaserine resistance | 340 | L |
cysD | S | Chromate resistance | 581 | L |
cysE | S | Triazole resistance in cysM | 717 825 | C |
cysE | S | Triazole resistance | 341 | C |
cysE | E | Novobiocin resistance | 631 | L |
cysG | S | Azaserine resistance | 340 | L |
cysH | S | Azaserine resistance | 340 | L |
cysH | S | Chromate resistance | 581 | L |
cysI | S | Azaserine resistance | 340 | L |
cysI | S | Chromate resistance | 581 | L |
cysJ | S | Azaserine resistance | 340 | L |
cysJ | S | Chromate resistance | 581 | L |
cysK | S, E | Azaserine resistance | 340 827 | L |
cysK | S | Azide resistance | 147 227 | L |
cysK | E | Selenate resistance | 230 | L |
cysK | E, S | Triazole resistance | 147 227 826 827 | L, C |
cysK | E | Selenite resistance | 230 | L |
cysL | S | Selenate resistance | 673 674 | |
cysL | S | Chromate + selenate resistance | 338 | |
cysM | S | Azaserine resistance | 340 | L |
cytR | E | Uridine as C source, improved utilization | 546 | |
dadA | E, S | Chloro(β)-D-alanine resistance | 832 | L |
dadA | E, S | D-Amino acid satisfaction of amino acid auxotrophy | 428 831 | C |
dcm | E | Aza(5)cytidine resistance | 247 | L |
dct | E | Fluoro(3)malate resistance | 401 | L |
dct | E | Tartrate resistance | 687 | L |
dct | S | Malate (L) as improved C source | 745 | D |
deoA | E | Deoxyadenosine + fluorouracil resistance in upp | 3 | L |
deoA | E | Thymidine resistance in deoC | 3 | |
deoB | E | Thymidine resistance in deoC | 3 651 | L |
deoB | E, S | Thymineless death prevention by low thymine levels in thyA | 71 471 | |
deoC | E | Thymineless death prevention by low thymine levels in thyA | 325 471 651 | L |
deoD | E | Deoxy(2)adenosine resistance in deoC | 651 | L |
deoD | E | Deoxyadenosine + fluorouracil resistance in upp | 3 | L |
deoR | E | Inosine as improved C source | 546 | C |
deoR | S | Diamino(2,6)purine satisfaction of purine auxotrophy | 251 | |
deoR | S | Uridine resistance in thyA deoB | 71 | |
dgd | E | Arabitol (D) as C source in fuc | 849 | |
dgoR | E | Keto(2)-3-deoxygalactonate as C source | 144 | C |
dgsA | E | Glucosamine as anaerobic C source in ptsG | 652 | L |
dhuA | E, S | Histidine (D) satisfaction of his auxotrophs | 422 428 546 | |
dhuA | S | Azaserine + tryptophan resistance | 432 | |
dld | E | Vinylglycolate resistance | 696 | L |
dml | S | Malate (D) as C source | 737 | |
dnaB | E | Lambdoid phage mixture coinfection resistance | 259 | |
dnaB | E | Phenethyl alcohol resistance | 494 | |
dnaE | E | Acriflavin (acridine) resistance | 553 554 555 | |
dnaE | E | Globomycin resistance | 668 | S |
dnaJ | E | Lambda phage induction, resistance to | 667 | S |
dnaJ | E | Lambdoid phage mixture coinfection resistance | 257 259 | S |
dnaJ | E | P2 phage + lambda phage coinfection resistance | 753 | S |
dnaK | E | Lambda phage induction, resistance to | 667 | S |
dnaK | E | Lambdoid phage mixture coinfection resistance | 257 259 | S |
dnaK | E | P2 phage + lambda phage coninfection resistance | 753 | S |
dnaP | E | Phenethyl alcohol resistance | 809 | |
dor | S | Drug-resistant gene maintenance | 814 | |
dppA | E, S | Bacilysin resistance | 1 | L |
dppA | E, S | Bialaphos resistance | 1 | L |
dppA | E, S | Valine-containing dipeptide resistance | 1 | L |
dppA | E | Lysyl-2-aminoxypropionate resistance | 603 | L |
dppA | E | Glycylleucine resistance | 269 | L |
dppA | E | Phenylalanylleucine resistance | 269 | L |
dppA | E | Glycylvaline resistance in opp | 178 | L |
dsdA | E | Sucrose as C source | 5 | L |
dsdC | E | Sucrose as C source | 5 | |
ebgA | E | Lactose utilization in ∆lacZ | 118 | Q |
ecfB | E | Serine (L) as C source | 567 768 | |
ecfB | E | Kanamycin resistance | 567 768 | |
ecfB | E | Neomycin resistance | 608 | |
ecfB | E | Colicin K resistance | 608 | |
edd | E | Gluconate as C source in eda | 239 240 | L |
emrB | E | CCCP resistance due to gene dosage | 472 | D |
emrB | E | Nalidixic acid resistance due to gene dosage | 472 | D |
emrB | E | Thiolactomycin resistance due to gene dosage | 250 | D |
emrB | E | Thiolactomycin resistance | 250 | |
envB | E, S | Mecillinam resistance | 359 587 | |
envB | E | UV light resistance | 24 | |
envM | E, S | Diazoborine resistance | 63 | S |
envZ | E | Ampicillin resistance | 362 363 | |
envZ | E | Colicin L tolerance | 812 | |
envZ | E | Lambda phage resistance | 812 | |
envZ | E | Me1 phage resistance | 801 | |
envZ | E | TPI phage resistance | 812 | |
envZ | E | TuIa phage resistance | 801 | |
envZ | E | Freeze-thaw resistance | 112 | |
envZ | E | Colicin (multiple) resistance | 626 | |
eryC | E | Erythromycin resistance | 599 | |
eryD | E | Erythromycin resistance | 830 | |
exbB | E | Albomycin resistance | 205 | |
exbB | E | Colicin I resistance | 283 624 | |
exbB | E | Colicin (other) resistance | 283 624 | |
exbC | E | Colicin B resistance | 624 | |
exbC | E | Colicin I resistance | 283 624 | |
exbC | E | Colicin (other) resistance | 283 624 | |
exuR | E | Aldohexuronate resistance in eda | 612 | |
exuR | E | Hexuronate as C course in noninducible exuR eda | 612 | C |
exuT | E | Aldohexuronate resistance in eda | 612 | L |
fadB | E | Thiolactomycin resistance (due to gene dosage) | 778 | D |
fadL | E | T2 phage resistance in ompF+ or ompF | 70 534 | L |
fadR | E | Decanoate as C source | 713 | L |
fba | E | Streptozotocin resistance | 456 | L |
fepABCDG | E | Colicin B resistance | 623 624 | L |
fepABDCG | E | Colicin D resistance | 623 | L |
fhuA | E, S | Albomycin resistance | 87 387 388 478 479 | S |
fhuA | S | ES18 phage resistance | 87 478 479 | S |
fhuA | E | T1 phage resistance | 93 409 870 | S, L |
fhuA | E | T5 phage resistance | 93 151 387 870 | L |
fhuA | E | Φ80 phage resistance | 151 387 409 870 | L, S |
fhuA | E | Colicin M resistance | 151 387 409 | L, S |
fhuA | E | Beta-lactam conjugate resistance | 93 | L |
fhuB | E | Albomycin resistance | 618 | L |
fliC | E, S | Chi phage resistance | 347 349 416 417 513 710 | |
fliC | S | Prolonged static cultivation | 249 | |
flrB | S | Trifluoroleucine resistance | 115 117 | |
folA | E | Sulfonamide resistance | 607 697 | S, D |
folA | S | Trimethoprim resistance | 405 654 718 719 | S, D |
folP | E | Sulfonamide resistance | 756 | S |
fruA | E | Deoxy(2)glucose-independent fructose utilization | 11 | |
fruA | E | Xylitol resistance | 614 639 | L |
fruA | E | Sorbose (L) resistance | 715 | L |
fts (generic) | E | Filter retention | 55 | |
ftsZ | E | UV irradiation resistance in lon | 373 | |
ftsZ | E | Methyl methanesulfonate resistance in lon | 373 | |
ftsZ | E | Nitrofurantoin resistance in lon | 252 | |
fucA | E | Propanediol as C source | 287 | |
fucA | E | Ethyleneglycol as C source in propanediol utilizer | 79 | |
fucA | E | Fucose (L) as C source in propanediol utilizer | 287 | |
fucA | E | Xylitol as C source in propanediol utilizer | 848 | |
fucA | E | Arabinose (D) as C source | 450 | |
fur | E | Manganese resistance | 300 | C |
fusA | E | Fusidic acid resistance | 65 434 695 761 | S |
gabC | E | Aminobutyrate as N source | 197 | |
gadS | E | Glutamate as C source | 292 | L |
gal operon | E | Galactose utilization in the presence of thiomethylglucoside | 636 | D |
gal operon | S | Deoxy(2)galactose resistance | 9 552 | L |
gal operon | E | Galactose resistance in galU | 664 | L |
galC | S | Glucose as C source in ∆ptsHI | 613 | |
galE | E, S | P1 phage infection of Salmonella sp. monitored by drug resistance | 527 | L |
galE | E | U3 phage resistance | 816 | L |
galE | S | Deoxy(2)galactose resistance | 408 | L |
galE | S | Felix O phage resistance | 334 527 591 833 | L |
galE | S | P22 phage resistance | 334 527 591 833 | L |
galK | S | Deoxy(2)galactose resistance | 408 | L |
galK | E, S | Galactose resistance in galE | 569 752 | L |
galK | E | Galactose resistance in galT | 859 | L |
galK | E | Galactose resistance in galU | 664 | L |
galP | S | Deoxy(2)galactose resistance | 552 | L |
galR | E | Thiomethylgalactoside-independent utilization of galactose in galR(Con) | 108 | |
galR | S | Glucose utilization in ∆ptsHI | 613 | |
galR | E | Galactose resistance in galT+K+E+/galT+K+E+ galU | 664 | |
galT | E | Streptozotocin resistance | 456 | L |
galU | E | Ampicillin resistance | 212 | L |
galU | E | P1 phage resistance | 242 | L |
galU | E | U3 phage resistance | 816 | L |
galU | S | Felix O phage resistance | 334 | L |
garA | S | Gamma irradiation resistance | 346 | |
garA | E | Glucarate (D) resistance in ppc | 647 | L |
garB | S | Gamma irradiation resistance | 346 | |
gatACD | E | Fucitol resistance in galactitol-utilizing strains | 184 | L |
gatACD | E | Deoxy(2)galactitol resistance in galactitol-utilizing strains | 184 | L |
gatACD | E | Arabitol utilization | 466 845 | |
gatACD | E | Ribitol utilization | 466 845 | |
gatACD | E | Arbitol (D) resistance | 639 | L |
gleR | S | Glycylleucine resistance in ilv | 580 | |
glnA | S | Histidine(D) + glycylglutamine satisfaction of his auxotrophs | 819 | L |
glnA | E | Methylammonium resistance | 694 | S |
glnA | E | Methionine sulfoxamine resistance in glnG | 592 | C |
glnA | S | Glutamyl(γ)hydrazide resistance | 518 871 | S |
glnF | S | Glutamyl(γ)hydrazide resistance | 433 | L |
glnH | S | Glutamyl(γ)hydrazide resistance | 433 | L |
glnP | E | Glutamine as C source | 433 501 820 | |
glnP | E, S | Methionine sulfoxamine resistance | 37 501 | L |
glnP | E | Glutamyl(γ)hydrazide resistance | 501 821 | L |
glnP | E | Glutamine (D) resistance | 501 | L |
glnV | E | Caffeine resistance | 185 | S |
glpD | E | Streptozotocin resistance | 456 | L |
glpF | E | Glyceraldehyde (L) resistance | 762 | L |
glpK | E | Glyceraldehyde (L) resistance | 762 | L |
glpK | E, S | Methyl(α)glucoside-resistant glycerol utilization in ptsI | 64 665 | |
glpT | E, S | Fosfomycin resistance | 10 29 313 707 800 | L |
glpT | E | Glyceraldehyde (DL) 3-phosphate resistance | 762 | L |
glpT | E | Arsenate resistance | 838 | L |
glpT | E | Dihydroxybutyl phosphonate resistance | 285 453 | L |
glpT | E | Fluorohydroxyacetone phosphate resistance | 515 | L |
glpT | E | Chlorohydroxyacetone phosphate resistance | 515 | L |
glpT | E | Glycerol 3-phosphorothioate resistance | 295 | L |
gltA | E | Improved growth in icd | 435 | L |
gltH | E | Glutamate as C source | 496 497 687 | |
gltR | E | Glutamate as C source at 42°C | 497 | |
gltS | E | Glutamate as C source | 496 687 | Q |
gltS | E | Glutamate as C source | 496 497 687 | |
gltS | E | Glutamate (D) resistance in gltS (increased) | 525 716 | L |
gltS | E | Methyl(α)glutamate resistance in gltS (increased) | 391 525 716 | L |
gltS | E | Homocysteic acid resistance | 213 | L |
gltX | E | Glutamyl-γ-methyl ester resistance | 425 | |
glyA | E | Serine + methionine + glycine resistance in relA | 783 | |
gntM | E | Glycerol + gluconate as C source in eda | 217 | L |
gntR | E | Acetate + gluconate as C source in ppc | 39 | |
gntS | E | Acetate + gluconate as C source in ppc | 39 | L |
gor | E | Methyl viologen tolerance | 430 | L |
gprAB | E | Lambda phage resistance | 578 670 | |
gpt | S | Aza(8)guanine resistance | 272 764 | L |
gpt | E | Sulfanilamide resistance in presence of guanine | 97 | L |
groM | E | T7 phage resistance | 427 | |
grpD | E | Lambda mutant prophage induction, survival of | 667 | |
grpE | E | Lambda mutant prophage induction, survival of | 667 | |
gsh (generic) | E | Nitrosoguanidine resistance | 693 | L |
gsh (generic) | E | Methylglyoxal resistance | 548 | |
gshAB | E, S | Selenite resistance | 423 | L |
guaAB | E | Psicofuranine resistance | 779 | |
guaB | S | Fluoro(5)uracil + fluoro(5)uridine resistance | 367 | L |
gurBCD | E | Glycerol + methylglucuronide a C source in eda | 572 | L |
gyrA | E, S | Triazolealanine + aminotriazole resistance | 660 | S |
gyrA | E, S | Nalidixic acid resistance | 200 298 | S |
gyrA | E | Quinolone resistance | 860 | S |
gyrA | E | Oxolinic acid resistance | 734 | S |
gyrA | E | Glucosides (β) as C source | 194 | |
gyrA | S | Thermotolerance | 200 | |
gyrB | S | Triaolealanine + aminotriazole resistance | 660 | S |
gyrB | E | Aminotriazole resistance in relA | 772 | S |
gyrB | E | Novobiocin resistance | 255 | S |
gyrB | E | Coumermycin resistance | 181 255 593 | D, S |
gyrB | E | Chlorobiocin resistance | 589 | |
gyrB | E | Glucosides (β) as C source | 194 | |
gyrB | E | Lambda mutant infection resistance | 521 | |
gyrB | E | Nalidixic acid resistance | 333 855 | S |
hem | E | Streptomycin resistance | 57 | L |
hemA | E | Kanamycin resistance | 585 | L |
hemA | E, S | Neomycin resistance | 683 | L |
hemB | E | Kanamycin resistance | 585 | L |
hemB | E | Kanamycin-resistant, hemin-supported growth of hemA | 507 | L |
hemB | E | Colicin K-type tolerance | 83 | |
hemC | S | Neomycin resistance | 682 | L |
hemD | S | Neomycin resistance | 681 | L |
hemE | S | Neomycin resistance | 189 680 | L |
hemBCF | E | Plate method | 506 | L |
hemG | E | Neomycin resistance | 679 | L |
hemL | E | Kanamycin resistance | 350 | L |
hflC | E | Lambda mutant phage resistance | 56 | |
hflK | E | Lambda mutant phage resistance | 56 | |
hflX | E | Lambda mutant phage resistance | 56 | |
himA | E | Mu prophage induction, survival of | 520 522 | |
himA | E | Mu phage lytic growth resistance | 81 | |
himA | E | Lambda mutant phage infection, survival of | 519 521 | |
himA (himC) | E | Lambda mutant phage resistance | 519 521 | |
himD | E | Mu prophage induction, survival of | 520 522 | |
himD | E | Mu phage lytic growth resistance | 81 | |
hipA | E | Cycloserine resistance | 541 | |
hipA | E | Ampicillin resistance | 541 | |
hipA | E | Fosfomycin resistance | 541 | |
hipQ | E | Norfloxacin resistance | 842 | |
hipQ | E | Ampicillin resistance | 842 | |
his structural genes | E, S | Triazolealanine + aminotriazole resistance | 98 126 658 | C, Q |
his structural genes | S | Aminotriazole resistance | 20 21 | D |
his structural genes | S | Growth at 42°C in his-overexpressing strain | 804 | Q |
his structural genes | S | Histidinal satisfaction of his auxotroph requirement at 30°C | 374 375 | Q |
his structural genes | S | Histidine (D) satisfaction of his auxotroph requirement | 374 375 | Q |
hisG | E, S | Thiazolealanine resistance | 540 698 824 | S, FBI |
hisG | S | Hydrazino (α) imidazole propionic acid resistance | 699 | S, FBI |
hisG | S | Histidinal satisfaction of his auxotroph requirement at 30°C | 374 375 | L |
hisG | S | Histidine (D) satisfaction of his auxotroph requirement | 374 375 | L |
hisG | E | Histidine-resistant adenine → guanine nucleotide | 33 | S,FBI |
hisJ | S | Hydrazino (α) imidazole propionic acid resistance | 13 15 | L |
hisJ | S | Azaserine + tryptophan resistance in dhuA | 15 432 | |
hisP | S | Hydrazino (α) imidazole propionic acid resistance in dhuA | 14 15 | L |
hisP | S | Arginine as N source | 13 15 432 | D |
hisQ | S | Hydrazino (α) imidazole propionic acid resistance | 13 15 | L |
hisR | S | Triazolealanine + aminotriazole resistance | 658 | Q |
hisR | S | Thiazolealanine resistance | 706 | Q |
hisR | S | Methyl(2)histidine resistance + aminotriazole resistance | 658 | Q |
hisS | S | Triazolealanine + aminotriazole resistance | 658 | S |
hisS | S | Thiazolealanine resistance | 657 | S |
hisT | E, S | Triazolealanine + aminotriazole resistance | 98 148 658 705 784 | L |
hisT | E | Azaleucine resistance | 98 784 | L |
hisT | E | Serine resistance | 98 784 | L |
hisT | S | Amino(3)tyrosine resistance | 148 658 705 | L |
hisT | S | Thialysine resistance | 148 658 705 | L |
hisT | S | Trifluoroleucine resistance | 148 658 705 | L |
hisT | S | Norleucine resistance | 148 658 705 | L |
hisT | S | Hydroxy (β) leucine resistance | 148 658 705 | L |
hisT | E | Phenyl galactoside resistance of lacP lacI (nonsense) supE | 747 | |
hisU | S, E | Triazolealanine + aminotriazole resistance | 23 660 | |
hisU | S | Nalidixic acid resistance | 593 660 | |
hisW | S, E | Triazolealanine + aminotriazole resistance | 23 | |
hisW | S | Coumermycin resistance | 593 660 | |
hpt | E | Mercapto(6)purine resistance in gpt | 371 | |
hpt | E | Sulfanilamide + hypoxanthine resistance | 97 | L |
hsd | E | Lambda vir resistance after infection with | 183 | L |
hsd | S | Lactose utilization after conjugation of F′lac into Salmonella sp. | 103 | L |
hut | S | Histidine as sole N or C source | 509 | |
icdE | E, S | Nalidixic acid resistance | 91 311 | L |
iclR | E | Butyrate or valerate as better C source | 602 | C |
iclR | E | Glucose or glycerol as C source in ppc | 488 | |
ileR | E | Trifluoroleucine resistance | 412 | |
ileS | E | Pseudomonic acid resistance | 858 | S |
ileS | E | Thiaisoleucine resistance | 757 | S |
ilv structural genes | S | Sulfometuron methyl + valine resistance | 872 | C |
ilv structural genes | E | Aminobutyrate resistance | 633 780 | C |
ilv structural genes | E | Valine resistance | 268 | C |
ilv structural genes | S | Cyclopentane glycine resistance | 586 | C |
ilvA | S | Cyclopentane glycine resistance | 586 | S, FBI |
ilvA | E | Glyclleucine resistance | 806 | S, FBI |
ilvA | S | Threonine as sole N source | 106 | S, FBI |
ilvA | E | Growth on minimal medium of ilvA+ (multicopy) ilvDC hisT overcoming 2-ketobutyrate accumulation | 231 | L |
ilvB | E | Aminobutyrate resistance | 633 780 | S, FBI |
ilvB | E | Valine resistance | 633 755 | S, FBI |
ilvB | E | Glyclleucine resistance | 269 | S |
ilvB | E | Phenylalanylleucine resistance | 269 | S |
ilvF | E | Valine resistance | 174 610 | G |
ilvG | E, S | Sulfometuron methyl + valine resistance | 441 851 872 | S, Q |
ilvG | E | Valine resistance | 221 448 720 | G |
ilvH | E | Aminobutyrate resistance | 633 780 | S, FBI |
ilvH | E | Valine resistance | 633 755 | S, FBI |
ilvH | E | Glyclleucine resistance | 269 | S |
ilvH | E | Phenylalanylleucine resistance | 269 | S |
ilvI | E | Aminobutyrate resistance | 633 780 | S |
ilvI | E | Valine resistance | 633 755 | |
ilvI | E | Glyclleucine resistance | 269 | |
ilvI | E | Phenylalanylleucine resistance | 269 | |
ilvJ | E | Valine resistance | 174 361 649 | G |
ilvU | E | Thiaisoleucine resistance | 222 | |
kdgR | E | Keto(2)-3-deoxygluconate as C source | 377 615 | C |
kdsA | S | 9NA phage resistance in galE | 452 641 | |
ksgA | E | Kasugamycin resistance | 312 726 793 | L |
ksgB | E | Kasugamycin resistance | 238 726 | |
ksgC | E | Kasugamycin resistance | 861 | |
ksgD | E | Kasugamycin resistance | 238 | |
lac | E | Growth in lactose-limited chemostats | 330 | D |
lacI,operator | E | Methyl(α)glucoside-resistant utilization of lactose in ptsH | 665 | C |
lacI,operator | E | Raffinose as C source | 459 | C |
lacI,operator | E | Neolactose as C source | 459 | C |
lacI,operator | E | Phenyl galactoside as C source | 523 | C |
lacI,operator | E | Lactobionic acid as C source | 440 | C |
lacI,operator | E | Lactitol as C source | 457 | C |
lacI,operator | E | Melibiose as C source | 475 | C |
lacIoperator | E | Melibiose as C source and acetyl(N)lactonate as N source | 475 | C |
lacI,operator | E | Lactobionic acid as C source | 474 | |
lacI,operator | E | Acetyl(N)lactonate as N source | 474 | Q |
lacI,operator | E | Nitro(o)-phenylthiogalactoside resistance in lacI(Con) or lacO(Con) | 543 571 | Q |
lacI,operator | E | Methyl(α)glucoside-resistant lactose utilization | 406 | C |
lacY | E | Nitro(o)-phenylthiogalactoside resistance | 523 543 721 | L |
lacY | E | Phenyl galactoside resistance | 376 | L |
lacY | E | Phenethylyl galactoside resistance | 376 | L |
lacY | E | Arabinose (L) growth in the presence of lac operon inducer | 812 | L |
lacY | E | Thiodigalactoside resistance | 241 | |
lacZ | E | Lactobionic acid as C source | 440 | D |
lacZ | E | Phenyl galactoside resistance | 376 500 | L |
lacZ | E | Phenethylyl galactoside resistance | 376 500 | L |
lacZ | E | Nitro(o)-phenyl galactoside resistance | 376 500 | L |
lamB | E | Lambda phage resistance | 88 134 135 253 644 766 | L, S |
lamB | E | K10 phage resistance | 644 | |
lamB | E | Thio(5)maltose resistance | 223 | L |
lct | E | Vinylglycolate resistance | 696 | |
leuA | S | Trifluoroleucine resistance | 115 | FBI, S |
leuJ | E | Trifluoroleucine resistance | 575 | |
leu(structural genes) | S | Trifluoroleucine resistance | 115 116 | C |
leuS | S, E | Azaleucine resistance | 477 514 | S |
leuS | S | Trifluoroleucine resistance | 7 | S |
leuW | E | Calmodulin inhibitor resistance | 129 | S |
lev | E | Levallorphan resistance | 164 | |
lexA | E | Mitomycin C resistance of recA (SOS-induced) sfi lexA3(Con) | 538 | L |
lig | E | T4 phage lig mutant nibbling of colonies yielding lig overproducer | 254 | Q |
lig | E | T4 phage lig mutant resistance from lig overproducer | 254 | L |
linB | E | Lincomycin resistance | 26 343 | |
lit | E | T4 mutant phage resistance | 143 | |
livG | E | Azaleucine resistance | 303 561 | L |
livH | E | Valine resistance in leu | 17 595 | L |
livH | E | Azaleucine resistance | 561 | L |
livJ | E | Valine resistance in leu | 17 595 | L |
livK | E | Valine resistance in leu | 17 595 | L |
lon | E, S | Chlorpromazine resistance | 198 529 | L |
lon | E | Promethazine resistance | 529 | L |
lpp | E | Globomycin resistance | 140 344 854 868 | L |
lpcA | E | T3 phage resistance | 792 | L |
lpcA | E | T4 phage resistance | 792 | L |
lpcA | E | T7 phage resistance | 792 | L |
lpcA | E | P1 phage resistance | 40 41 | |
lpcB | E | T4 phage resistance | 760 | |
lpcB | E | T7 phage resistance | 760 | |
lrp | E | Leucine (D) satisfaction of leu auxotrophs | 18 428 | |
lysC | E | Aminoethylcysteine (thialysine) resistance | 82 765 | S, FBI |
lysC | E | Lysine hydroxamate resistance | 82 765 | S, FBI |
lysP | E | Aminoethylcysteine (thialysine) resistance | 611 736 | L |
lysS | E | Aminoethylcysteine (thialysine) resistance | 323 | S |
lysS | E | Phenyl galactoside resistance of lacI q lacI(nonsense) lacP supL | 748 | |
lyt | E | Beta-lactam tolerance | 700 | |
mac | E | Erythromycin growth dependence | 725 | |
malE | E, S | Methylglucoside(α)-resistant utilization of maltose | 665 | |
malE | E | Thio(5)maltose resistance | 223 | L |
malF | E, S | Methylglucoside(α)-resistant utilization of maltose | 665 | |
malF | E | Thio(5)maltose resistance | 223 | L |
malG | E, S | Methylglucoside(α)-resistant utilization of maltose | 665 | |
malG | E | Thio(5)maltose resistance | 223 | L |
malK | E | Lambda phage resistance | 766 | L |
malK | E, S | Methylglucoside(α)-resistant utilization of maltose | 177 665 | |
malK | E | Thio(5)maltose resistance | 223 | L |
malP | E | Maltose as C source in malT | 327 | |
malQ | E | Maltose as C source in malT | 327 | |
malT | E | Lambda phage resistance | 766 | L |
malT | E | Thiomaltose resistance | 223 | L |
manA | E | Streptozotocin resistance | 456 | |
manC | E | Lyxose (D) as C source | 738 | |
manXYZ | E | Phage N4 resistance | 410 | |
manXYZ | E | Deoxyglucose resistance | 158 379 | L |
marA | E | Menadionine resistance | 274 | |
marA | E | Chloramphenicol resistance | 286 | |
marA | E | Tetracycline resistance | 286 329 | |
mbrABCD | E | Camphor resistance | 776 777 | |
mdoB | E | Arbutin resistance in dgk | 360 | L |
mel (generic) | E | Raffinose as C source in lacI | 459 | |
mel (generic) | S | Methylglucoside(α)-resistant utilization of melibiose | 665 | |
melB | E | Deoxy(2)glucose-resistant utilization of melibiose | 431 | S |
melB | E | Lithium-resistant utilization of melibiose | 397 | S |
metA | S | Methyl(α)methionine resistance | 127 447 | FBI, S |
metC (ecfA?) | E | Neomycin resistance | 464 | |
metC (ecfA?) | E | Colicin K resistance | 465 | |
metC (ecfA?) | E | Chloro(β)alanine resistance | 832 | |
metG | E | Ethionine resistance | 28 | S |
metJ | E, S | Ethionine resistance | 447 | |
metJ | E | Glutamyl-γ-methyl ester resistance | 425 | S |
metJ | E, S | Norleucine resistance | 128 | |
metJ | E | Methionine sulfoximine + methyl(α)methionine resistance | 386 | S |
metK | E, S | Ethionine resistance | 275 289 447 735 | S |
metK | E | Glutamyl-γ-methyl ester resistance | 425 | S |
metK | E, S | Norleucine resistance | 128 447 735 | S |
metK | S | Methyl(α)methionine resistance | 447 735 | S |
metL | E | Hydroxy (β) norvaline resistance | 138 | S, FBI |
metPD | E, S | Methyl(α)methionine resistance | 37 38 386 | L |
metPD | E, S | Methionine sulfoximine resistance | 37 38 386 | L |
mglA | E | Fucose + arabinose-supported growth in galP | 209 613 | |
mglB | E | Fucose + arabinose-supported growth in galP | 209 613 | |
mglC | E | Fucose + arabinose-supported growth in galP | 209 613 | |
mglD | E | Methyl-β-galactoside-supported growth | 645 | C |
mng | E | Manganese resistance | 708 | |
mopA | E | T4 phage resistance | 258 | S |
mopB | E | T4 phage resistance | 258 | S |
motAB | E | Chi phage resistance | 349 709 710 | |
mrb | E | Fosfomycin resistance | 800 | |
mrdA | E | Mecillinam resistance | 759 | |
mrdB | E | Mecillinam resistance | 358 502 759 | |
mreBCD | E | Mecillinam resistance | 582 807 | |
mtlA | E | Arabinitol (D) resistance | 614 | L |
mtlC | E | Mannitol (limiting) as C source | 722 | C |
mtr | E | Methyl(5)tryptophan resistance | 305 320 523 | L |
murZ | E | Fosfomycin resistance due to increased gene dosage | 499 | D |
mut (generic) | E | Streptomycin resistance | 309 | |
mut (generic) | E | Azaserine resistance | 703 | |
mut (generic) | E | Chemostat growth | 152 | |
mutH | E | Amino(2)purine resistance in dam | 267 | L |
mutL | E | Amino(2)purine resistance in dam | 267 | L |
mutS | E | Amino(2)purine resistance in dam | 267 | L |
mvrC | E | Methyl viologen resistance | 532 | D |
nadB | S | Amino(6)nicotinamide resistance | 142 336 | S |
nadD | S | Amino(6)nicotinamide resistance | 336 337 | L |
nagA | E | Streptozotocin resistance | 456 | L |
nagA | E | Iodoacetylglucosamine resistance | 823 | L |
nagB | E | Iodoacetylglucosamine resistance | 823 | L |
nagE | E | Streptozotocin resistance | 456 | L |
nagE | E | Iodoacetylglucosamine resistance | 823 | L |
nagE | E | Deoxy(2)-2-iodoacetamideoglucose resistance | 379 | L |
nalB | E | Nalidixic acid resistance | 298 | |
nalD | E | Nalidixic acid resistance | 333 | |
nar (general) | E | Metronidazole resistance | 677 | L |
narC | E | Chlorate resistance | 266 280 | L |
narG | E | Chlorate resistance | 739 | L |
narH | E | Chlorate resistance | 739 | L |
ndk | S | Aza(8)guanine resistance | 264 650 | |
neaB | E, S | Neamine resistance | 119 182 495 | |
nek | E | Aminoglycoside resistance | 27 342 | |
nfnA | E | Nitrofurantoin resistance | 684 | |
nfnB | E | Nitrofurantoin resistance | 684 | |
nfsA | E | Nitrofuranzone resistance | 90 505 | |
nfsB | E | Nitrofuranzone resistance | 90 505 | |
nhaA | E | Lithium resistance (multicopy) | 628 | D |
nol | S | Norleucine resistance | 324 | |
nov | E | Novobiocin resistance | 630 | |
nrdA | E | Hydroxyurea resistance | 609 | D |
nrdB | E | Hydroxyurea resistance | 609 | D |
nupC | E | Showdomycin resistance | 415 545 | L |
nupC | E | Fluorouracil resistance | 544 | L |
nupC | E | Fluorodeoxyuridine resistance | 545 | L |
nupC | E | Fluoruridine resistance | 544 | L |
nupC | E | Fluorodeoxycytidine resistance | 544 | L |
nupG | E | Fluorouracil resistance | 544 | L |
nupG | E | Fluorodeoxyuridine resistance | 545 | L |
nupG | E | Fluorouridine resistance | 544 | L |
nupG | E | Fluorodeoxycytidine resistance | 544 | L |
nusA | E | Lambda prophage induction, survival of | 244 | |
nusB | E | Lambda prophage induction, survival of | 245 260 | |
nusB | E | Lambdoid phage resistance | 260 | |
nuvA | E, S | Near-UV irradiation resistance | 424 468 767 | L |
nuvC | E | Near-UV irradiation resistance | 663 | |
ompA | E | K3 phage resistance | 306 489 491 493 | L |
ompA | E | T-even-like phage resistance | 199 533 535 | S |
ompA | E | TuII* phage resistance | 171 314 493 | L |
ompA | E | Ox2 phage resistance | 199 493 642 | |
ompA | E | Bacteriocin JF246 resistance | 124 491 | |
ompA | S | Bacteriocin 4-59 resistance | 741 | L |
ompA | E | Colicin K tolerance | 491 | |
ompA | E | Colicin L tolerance | 491 | |
ompA | E | Chelator resistance | 493 | |
ompA | E | Novobiocin resistance | 493 | |
ompB | S | PH51 phage resistance | 372 | |
ompB | S | PH105 phage resistance | 372 | |
ompC | E | Me1 phage resistance | 791 801 | L |
ompC | E | TuIa phage resistance | 801 | L |
ompC | S | PH51 phage resistance | 372 | L |
ompC | S | PH105 phage resistance | 372 | L |
ompC | E | Host range Serratia marcescens phage resistance | 702 | |
ompD | S | PH51 phage resistance | 741 | L |
ompD | S | Bacteriocin 4-59 resistance | 741 | L |
ompF | E | Beta-lactam (ampicillin, cefoxitin) resistance | 362 363 | L |
ompF | E | Chloramphenicol resistance | 235 523 | L |
ompF | E | Tetracycline resistance | 235 523 | L |
ompF | E | Fluoro(5)uracil + nucleotide resistance | 52 | L |
ompF | E | Colicin A tolerance | 125 235 | |
ompF | E | Cloacin DF13 resistance | 846 | L |
ompF | E | Colicin L tolerance | 235 291 | L |
ompF | E | Colicin K tolerance | 235 | L |
ompF | E | Colicin E2 tolerance | 235 | |
ompF | E | Colicin E3 tolerance | 235 | |
ompF | E | Me1 phage resistance | 801 | L |
ompF | E | TuIa phage resistance | 801 | L |
ompF | E | TuIb phage resistance | 237 | |
ompF | S | PH51 phage resistance | 372 | L |
ompF | S | PH105 phage resistance | 372 | L |
ompF | E | Copper resistance in ompC | 480 | |
ompR | E | Me1 phage resistance | 801 | |
ompR | E | TuIa phage resistance | 801 | |
ompR | E | Copper resistance | 52 625 | |
ompR | E | Beta-lactam (ampicillin, cefoxitin) resistance | 362 363 | L |
ompR | E | Chloramphenicol resistance | 625 | |
ompR | E | Fluoro(5)uracil + nucleotide resistance | 52 | |
oppA | E, S | Triornithine resistance | 43 317 | L |
oppA | E | Glycylleucine resistance | 806 | L |
oppA | E | Alanyl-2-aminopropionate resistance | 603 | L |
oppA | E, S | Trilysine resistance | 317 | L |
oppA | E, S | Norleucylglycyl glycine resistance | 317 | L |
oppA | S | Glycylglycyl histidinol phosphate ester resistance | 317 | L |
oppA | E, S | Phaseolotoxin resistance | 733 | L |
oppA | E | Tripeptide (toxic amino acid containing) resistance | 604 | L |
oppA | E | Glycylglycyl-N-S-(phosphonoacetyl)-L-ornithine resistance | 604 | L |
oppE | E | Tripeptide (toxic amino acid containing) resistance | 22 | L |
optA | E | T7 phage gene 1.2 mutant resistance | 666 | |
osmB | E | Osmotolerance | 384 | L |
osmZ | E | Arbutin as C source | 179 | |
osmZ | E | Salicin as C source | 179 | |
oxyR | E, S | Peroxide resistance | 131 | C |
pab | E | Sulfonamide resistance | 97 | C |
pan | E | Salicylate resistance | 481 | C |
pan | E | Hydroxyaspartate resistance | 701 | C |
pan | E | Pentylpantothenamide resistance | 136 | C |
pdx | E | Isoniazid resistance | 186 | C |
pepA | S | Alafosfalin resistance | 263 | L |
pepA | E, S | Peptide (toxic, valine containing) resistance in pepN | 517 | L |
pepD | E, S | Peptide (toxic, valine containing) resistance in pepN pepA | 517 | L |
pepN | E, S | Albomycin resistance | 86 | L |
pepN | E, S | Peptide (toxic, valine containing) resistance | 517 | L |
pepN | E, S | Indicator plate | 445 | |
pepQ | E, S | Peptide (toxic, valine containing) resistance | 517 | L |
pfkA | E | Streptozotocin resistance | 456 | L |
pgi | E | U3 phage resistance | 816 | L |
pgi | E | Fosfomycin + fructose-6-phosphate resistance | 243 | L |
pgm | E | U3 phage resistance | 816 | L |
pheA | E | Fluoro(4)phenylalanine resistance | 351 564 | C, FBI |
pheR | S | Fluoro(4)phenylalanine resistance | 271 | C |
pheS | E | Fluoro(4)phenylalanine resistance | 78 218 395 | S |
pheS | E | Thymineless death resistance in thyA | 394 | S |
pheU | S | Fluoro(4)phenylalanine resistance | 729 | |
pho | S | Glycerol(β)-phosphate as C source in the presence of high phosphate | 407 | C |
phoA | E | Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoT | 315 | |
phoA | E | Glycerol(β)-phosphate as C source in the presence of high phosphate | 773 | C |
phoA | E | Glycerol(β)-phosphate resistance in glpD | 678 | |
phoB | E | Tellurite resistance | 770 | |
phoB | E | TC45 phage resistance | 771 | L |
phoB | E | Fluoro(5)uracil + adenosine resistance in upp, phoS, or phoT | 316 | |
phoE | E | Acid resistance | 659 | D |
phoE | E | TC45 phage resistance | 420 771 | S, L |
phoR | E | Arsenate resistance | 852 | |
phoR | E | Glycerol(β)-phosphate as C source in the presence of high phosphate | 204 838 | |
phoR | E | TC45 phage resistance | 621 | S |
phoS | E | Arsenate resistance | 852 | |
phoS | E | Glycerol(β)-phosphate as C source in the presence of high phosphate | 204 838 | |
phoS | E | TC45 phage resistance | 621 | S |
phoT | E | Arsenate resistance | 852 | |
phoT | E | Glycerol(β)-phosphate as C source in the presence of high phosphate | 204 838 | |
phoT | E | TC45 phage resistance | 621 | S |
phr | E | T1 phage (UV irradiated) resistance | 332 | L |
phxB | E | φX174 phage resistance | 547 | L |
pit | E | Arsenate resistance | 59 727 | L |
pldA | E | Actinomycin D resistance in the presence of EDTA | 301 805 | L |
pmi | S | P22 phage resistance | 656 833 | L |
pmi | S | 9NA phage resistance | 656 833 | L |
pmrA | E, S | Polymyxin resistance | 219 297 485 785 786 787 788 | |
pmrA | S | Neutrophil granule protein resistance | 219 | |
pncA | E, S | Amino(6)nicotinamide resistance | 234 455 822 | L |
pncA | E | Nicotinamide as sole N source | 598 | Q |
pncB | E, S | Amino(6)nicotinamide resistance | 234 455 | L |
pncB | E, S | Amino(6)nicotinate resistance | 234 455 | L |
pncX | S | Amino(6)nicotinamide resistance | 336 | |
pnp | E | Showdomycin resistance | 58 | |
polA | E | Lambda γ mutant phage resistance | 867 | L |
praA,B | S | P221 phage resistance | 576 674 | L |
praA,B | S | PH51 phage resistance | 576 | L |
praA,B | S | PH105 phage resistance | 576 | L |
prbA,B | S | ES18 phage resistance | 674 | |
prdB | S | PH51 phage resistance | 674 | |
prfA | E | Phenylgalactoside resistance of lacP lacI(nonsense) supE | 747 | |
prfB | E | Negamycin resistance | 145 | |
prh | S | HK009 phage resistance | 674 | |
prk | S | HK068 phage resistance | 674 | |
proAB | S | Osmotolerance | 155 | |
proA | E | Nitro(4)pyridine N-oxide resistance | 62 222 321 | L |
proB | E, S | Dehydroproline resistance | 62 155 635 | FBI, S |
proB | E | Nitro(4)pyridine N-oxide resistance | 62 222 321 | |
proB | E, S | Azetidine carboxylate resistance | 62 155 635 | FBI, S |
proP | E, S | Dehydroproline resistance in putA putP | 156 732 | L |
proU | S | Dehydroproline + azetidine carboxylate resistance at high osmolarity in putA putP | 156 | L |
prp | E | Propionate as C source | 400 | Q |
pspABCDE | E | Sulfanilamide + hypoxanthine resistance | 97 | |
pss | E | Ethanol resistance | 133 | |
pss | E | Dimethyl sulfoxide resistance | 133 | |
pstABCS | E | Arsenate resistance | 727 838 | L |
pstABCS | E | TC45 phage resistance | 621 | S |
pta | S | Fluoroacetate resistance | 96 281 463 797 | |
pts (general) | E | Glucose + gluconate-independent motility | 30 | |
ptsG | E | Methyl(α)-glucoside resistance | 102 104 | |
ptsG | E | Sorbose resistance | 715 | L |
ptsG | E, S | Deoxy(2)glucose-independent utilization of fructose | 418 510 | L |
ptsG | E, S | Deoxy(3)-3-fluoroglucose-independent utilization of fructose | 418 510 | L |
ptsG | E | Methyl(α)-glucoside-independent lactose + mannitol utilization | 80 | L |
ptsG | E | Glucosamine as C source | 379 | |
ptsG | E | Mannose as C source | 379 | |
ptsHI | E, S | Deoxy(3)-3-fluoroglucose-independent utilization of lactate | 510 | L |
ptsHI | E, S | Fosfomycin resistance | 146 800 | L |
ptsHI | E | Streptozotocin resistance | 16 873 | L |
ptsI | E | Ampicillin resistance | 212 | |
ptsI | S | Deoxy(3)-3-fluoroglucose resistance | 510 | L |
purA | E | Methyl(6)purine + hypoxanthine resistance | 60 | |
purB | E | Nalidixic acid resistance | 310 | L |
purR | E | Adenine resistance in hpt gpt | 461 462 | |
putA | E, S | Azetidine carboxylic acid resistance | 511 635 775 | L |
putAP | S | Baikiain resistance in constitutive background | 187 | L |
putA | S | Proline as N source with glucose as C source | 566 | |
putP | E, S | Dehydroproline resistance | 193 511 635 732 775 843 | L |
putP | E, S | Azetidine carboxylic acid resistance | 193 511 635 775 843 | L |
putP | S | Lithium-resistant proline utilization as C source | 551 | S |
puvA | E | Psoralen + UV irradiation resistance | 328 | C |
pyrB | S | Arginine-independent growth of pyrH in the presence of uracil | 366 | L |
pyrC | S | Arginine-independent growth of pyrH in the presence of uracil | 366 | L |
pyrD | S | Arginine-independent growth of pyrH in the presence of uracil | 366 | L |
pyrF | E | Fluoro(5)orotic acid resistance | 74 | L |
pyrH | S | Fluoro(5)orotic acid resistance | 865 | C |
pyrH | S | Fluorouracil resistance | 385 | C |
pyrH | S | Fluorouridine resistance | 385 | C |
pyrH | E | Fluoro(5)uracil + 5-fluorouridine resistance in udp | 606 | |
qmeACDE | E | Glycine tolerance | 829 | |
rap | E | Lambda phage resistance | 279 | |
recA | E | Lambda prophage induction deficiency during thymine deprivation | 190 | |
recF | E | Thymineless death resistance in thyA | 558 | |
recJ | E | Thymineless death resistance in thyA | 558 | |
recO | E | Thymineless death resistance in thyA | 558 | |
recQ | E | Thymineless death resistance in thyA | 557 | |
relA | E | UV (near) irradiation resistance | 632 | L |
relA | E | Serine resistance in relA | 167 | |
rep | E | P2 phage resistance | 113 | |
rfa (general) | E, S | U3 and FO phage resistance | 35 484 486 588 833 | |
rfa (general) | E, S | Ampicillin resistance | 212 550 562 | |
rfa (general) | S | Hemin satisfaction of hemA auxotrophy | 364 | |
rfa (general) | S | Cephalothin resistance | 562 | |
rfa (general) | S | Bacitracin resistance | 562 | |
rfaCDEF | S | FO phage resistance | 676 | |
rfaD | E | C21 phage resistance | 141 | |
rfaD | E | P1 phage resistance | 141 | |
rfaH | S | FO phage resistance | 458 675 | |
rfaP | E | U3 phage + K3 phage coresistance | 601 | |
rfb | S | DCCD resistance in rfa | 833 | |
rho | E | T4 phage resistance | 740 | |
rho | E | Lambda sus N7 nin-5 resistance in P2 lysogen | 352 353 | |
rho | E, S | Polarity suppression of gal leader insertion | 169 331 | |
ridA | E | Rifampin + kasugamycin dependence | 162 | |
ridB | E | Rifampin dependence | 160 | |
rplC | E | Tiamulin resistance | 73 | |
rplD | E | Erythromycin resistance | 725 840 | S |
rplE | E | Thiopeptin resistance | 467 | |
rplF | E | Gentamicin resistance | 101 | S |
rplK | E | Kasugamycin resistance | 159 | |
rplK | E | DAP starvation of ∆(mal-asd) in the presence of serine, methionine, and glycine | 165 | |
rplN | E | Kasugamycin resistance | 159 | |
rplN | E | Lincomycin resistance | 343 | |
rplO | E | Lincomycin resistance | 343 | |
rplV | E | Erythromycin resistance | 840 | |
rpoA | E | P2 vir1 phage resistance | 754 | S |
rpoB | E | Lambda cII + rifampin coresistance | 296 | S |
rpoB | E | Streptovaricin resistance | 863 | S |
rpoB | E | Rifampin resistance | 216 359 369 | S |
rpoB | E | Streptolydigin resistance | 357 469 688 | S |
rpoB | S | Fluorouracil resistance | 368 | S |
rpoB | E | Lambda phage + 434 phage cross-resistance | 256 | S |
rpoB | E | Lambda Nmar mutant phage resistance | 261 | S |
rpoB | E | Serine resistance in relA | 784 | S |
rpoB | E | Rifampin resistance in rpoB+/rpoB (rif) merodiploids | 36 | L |
rpoB | E | T7 phage resistance | 690 | S |
rpoC | E | T7 phage gene 2 resistance | 100 | |
rpoD | E | Lambda cI71 resistance | 556 | |
rpoD | E | Arabinose (L) as C source in cya or crp | 712 | S |
rpoH | E | Temperature resistance in rpoD(Ts) | 577 | S |
rpsB | E | Kasugamycin resistance | 583 861 | S |
rpsB | E | Cold resistance in rpsE cold-sensitive mutants | 559 | |
rpsC | E | Spectinomycin resistance and sucrose dependence | 195 | S |
rpsD | E | Spectinomycin resistance and sucrose dependence | 195 | S |
rpsD | E | Streptomycin independence of streptomycin-dependent rpsL | 304 | |
rpsE | E | Spectinomycin resistance and sucrose dependence | 195 526 | S |
rpsE | E, S | Spectinomycin resistance | 172 495 634 672 853 | S |
rpsE | E | Streptomycin independence of streptomycin-dependent rpsL | 304 | |
rpsG | E | Lincomycin resistance | 343 | S |
rpsI | E | Kasugamycin resistance and dependence | 161 163 | S |
rpsJ | E | Lambda prophage induction, resistance to | 170 246 | S |
rpsL | E, S | Streptomycin resistance | 89 495 853 | S |
rpsL | E | Neamine dependence | 798 | |
rpsL | E | Paromomycin resistance or dependence | 853 | S |
rpsL | E | Phenyl galactoside resistance of lacP lacI (nonsense) supE | 747 | |
rpsM | E | Kasugamycin resistance | 159 | |
rpsQ | E | Neamine resistance | 76 119 | S |
rpsR | E | Kasugamycin resistance | 159 | |
rrn | E | Erythromycin resistance | 704 | S |
rrn | E | Chloramphenicol resistance | 704 | S |
rrn | E | Spectinomycin resistance | 704 | S |
sbaA | E | Serine resistance | 166 | |
sbmA | E | Microcin B17 resistance | 446 | |
sdh | E | Succinate-independent growth in lpd | 154 | |
secA | E, S | Azide resistance | 227 232 584 808 864 | |
secA | E | Phenethyl alcohol resistance | 808 864 | |
semA | E | Microcin E492 resistance | 622 | |
serA | E | Serine hydroxamate resistance | 774 | FBI, S |
serS | E | Serine hydroxamate resistance | 774 | S |
sidCF | S | Albomycin resistance | 87 478 479 674 | |
sidK | S | Albomycin resistance | 87 478 479 674 | |
sidK | S | ES18 phage resistance | 87 478 479 674 | |
sloB | E | Nalidixic acid tolerance | 473 | |
sloB | E | Amidinopenicillin tolerance | 473 | |
sorAT | E | Sorbose (L) as C source in crosses with wild strains | 844 | |
spcB | S | Spectinomycin resistance | 853 | |
srlA | E | Sorbitol + xylitol resistance | 639 | L |
srlD | E | Fructose as C source in ptsF or ptsM | 378 | |
sspA | E | P1 phage resistance | 835 | L |
strB | S | Streptomycin resistance | 273 853 | |
strC | S | Streptomycin resistance | 648 | |
strM | E | Streptomycin resistance | 671 | |
strM | E | Phenyl galactoside resistance of lacIq lacI(nonsense) lacP supL | 748 | |
sulA | E | UV irradiation resistance in lon | 373 | L |
sulA | E | Methyl methanesulfonate resistance in lon | 373 | L |
sulA | E | Nitrofurantoin resistance in lon | 252 | L |
tabC | E | T4 phage resistance | 258 | |
tct | S | Fluorocitrate resistance | 724 | L |
tct | S | Trifluorocitrate resistance | 723 | L |
tct | S | 2-Fluoro-L-erythrocitrate resistance | 32 | L |
tdk | E, S | Azidothymidine resistance | 207 | L |
tdk | S | Fluorodeoxyuridine + uracil resistance in deoA | 54 | |
tdk | E | Fluoro(5)deoxyuridine resistance | 749 | L |
tdk | E | Bromo(5)deoxyuridine + UV irradiation resistance | 319 348 | L |
tet | E, S | Fusaric acid resistance | 72 487 | L |
tet | S | Quinaldic acid resistance | 72 | L |
thdA | E | Dapsone resistance | 383 | |
thi | E | Pyrithiamine resistance | 399 | C |
thrA | E, S | Thialysine resistance | 365 | S, FBI |
thrA | E | Serine resistance | 294 | S, FBI |
thrABC | E | Amino(2)-hydroxy(3)-pentoate resistance | 847 | D |
thrS | E | Borrelidin resistance | 248 276 560 596 | S, Q |
thyA | E, S | Aminopterin resistance | 66 123 325 730 | L |
thyA | E | Trimethoprim resistance | 66 730 | L |
tinA (tlr) | E, S | Thiolutin resistance | 381 382 714 | |
tmk | E | Dideoxy(2′,3′)thymidine resistance | 176 | S |
tnaA | E | Tryptophan-supported growth at 13°C | 568 | C |
tna | E | Indole + methyl(5)tryptophan-supported, glucose-resistant growth in ∆trp | 862 | |
tol | E | Bacteriocin tolerance | 85 120 173 236 | |
tolQAB | E | Colicin E1 resistance | 449 | |
tolQAB | E | TuIa phage resistance | 449 | |
tolB | E | Colicin E resistance | 19 | L |
tolB | E | Azaleucine resistance | 19 | L |
tolC | E | Colicin E1 tolerance | 536 653 | L |
tolD | E | Colicin E2 and E3 tolerance | 210 | |
tolD | E | Ampicillin resistance | 105 210 | |
tolE | E | Colicin E2 and E3 tolerance | 210 211 | |
tolE | E | Ampicillin resistance | 210 211 | |
tolI | E | Colicin Ia and Ib tolerance | 120 | |
tolJ | E | Colicin L, A, and S4 tolerance | 173 | |
tolM | E | Colicin M tolerance | 302 | |
tolQ | E | Colicin group A tolerance | 84a 750 | |
tolQ | E | Filamentous phage tolerance | 84a 750 | |
tolR | E | Colicin group A tolerance | 84a 750 | |
tolR | E | Filamentous phage tolerance | 84a 750 751 | |
tolZ | E | Colicin E2, E3, D, 1a, and 1b tolerance | 503 | |
tonB | S | ES18 phage resistance | 149 741 | |
tonB | E | T1 phage resistance | 46 | |
tonB | E | φ80 phage resistance | 46 | |
tonB | E | Colicin B resistance | 46 623 | |
tonB | E, S | Albomycin resistance | 85 505 741 | |
tonB | E | Colicin M resistance | 85 523 | |
tonB | S | Bacteriocin 4-59 resistance | 741 | |
tonB | E | Cephalosporin E-0702 resistance | 815 | |
topA | S | Kanamycin resistance | 202 | |
topA | S | Neomycin resistance | 202 | |
topA | S | Streptomycin resistance | 202 | |
tpp | E | Alafosfalin resistance | 603 | L |
tpp | E | Triornithine resistance in opp | 44 | L |
tppA | S | Tripeptide (toxic) resistance | 263 | |
tppB | S | Tripeptide (toxic) resistance | 263 | |
trmE? | E | Phenyl galactoside resistance of laclq lacI(nonsense) lacP supL | 748 | |
trp (generic) | E, S | Fluoro(6)tryptophan resistance | 42 318 | C |
trp (generic) | E, S | Methyl(5)tryptophan resistance | 42 318 | C |
trpE | E, S | Methyl(5)tryptophan resistance | 114 539 | S, FBI |
trpE | E | Methyl(3)anthranilate resistance | 308 | S, FBI |
trpR | E, S | Methyl(5)tryptophan resistance | 42 137 523 746 | |
trpR | E | Chuangxinmycin resistance | 850 | |
trpS | E | Indolmycin resistance | 75 | D |
trxA | E | T7 phage resistance | 498 | L |
trzA | S | Triazole resistance | 339 | |
tsx | E | T6 phage resistance | 99 299 490 492 620 | L, S |
tsx | E | Colicin K resistance | 99 299 490 492 620 | L, S |
tsx | E | Albicidin resistance | 69 | |
tufAB | E | Kirromycin resistance | 220 356 763 795 | |
tufAB | E, S | Mocimycin resistance | 335 794 | |
tyn | S | Tyramine as N source | 549 | |
tyrA | E, S | Fluorophenylalanine resistance | 270 729 | C |
tyrA | E | Amino(4)phenylalanine resistance | 504 | C |
tyrR | E, S | Amino(4)phenylalanine resistance | 95 504 811 | |
tyrR | E | Fluorotyrosine resistance | 130 | |
tyrR | S | Fluoro(4)phenylalanine resistance | 729 | |
tyrS | E | Fluorotyrosine resistance | 662 | S |
ubi (generic) | E | Neomycin resistance | 265 | L |
ubiF | S | Fluoro(5)uracil + carbamylaspartate resistance | 404 866 | L |
ubiF | E | Gentamicin resistance | 542 | |
ubiF | E | Streptomycin resistance | 542 | |
udhA | S | Fluoro(5)uridine resistance | 834 | L |
udk | E | Fluoro(5)uridine + uracil resistance | 380 | L |
udk | E | Fluoro(5)uridine resistance in upp | 565 | L |
udp | E | Fluoro(5)uracil + adenosine resistance | 606 617 | L |
ugpAB | E | Fluorohydroxyacetone phosphate resistance | 515 | L |
ugpAB | E | Dihydroxybutylphosphonate resistance in glpT | 691 692 | L |
ugpAB | E | Glycerol-3-phosphate as C source in glpT | 691 | C |
uhpR | E | Glucosamine 6-phosphate as C source | 191 | C |
uhpR | S | Glucose 1-phosphate as C source | 192 | C |
uhpR | E | Fructose 1-phosphate as C source | 224 | C |
uhpT | E | Chloro-3-hydroxyacetone resistance in uhp(Con) | 515 | L |
uhpT | E | Fluoro-3-hydroxyacetone resistance in uhp(Con) | 515 | L |
uhpT | E | Dihydroxybutylphosphonate resistance in uhp(Con) | 285 | L |
uhpT | E | Hydroxybutylphosphonate resistance in ubp(Con) | 285 | L |
uhpT | E | Deoxydihydroxyphosphonyl methyl fructose resistance | 285 | L |
uhpT | E | L-Glyceraldehyde-3-phosphate resistance in uhp(Con) | 285 | L |
uhpT | E | Fosfomycin resistance | 230 389 800 | L |
uhpT | E | Deoxy(2)glucose-6-phosphate resistance | 214 | L |
uidA | E | Galacturonide as C source | 742 | C |
uidA | E | Methylgalacturonide as C source | 573 | C |
uidA | E | Methylglucuronide + glycerol-supported growth in eda | 572 | L |
uidR | E | Galacturonide as C source | 742 | C |
uidR | E | Methylgalacturonide as C source | 573 | C |
ung | E | Bromodeoxyuridine + UV light resistance | 856 | L |
ung | E | T4 phage (uracil containing) resistance | 203 | L |
upp | E, S | Fluoro(5)uracil resistance | 53 605 617 | L |
upp | E | Aza(6)uracil resistance | 605 617 | L |
upp | E | Canavanine + aza(6)uracil resistance | 605 617 | L |
ushA | E | Fluoro(5)uracil + 5′-AMP resistance in upp | 52 | L |
uvrA | E | UV-irradiated lytic phage resistance | 332 | |
uvrB | E | UV-irradiated lytic phage resistance | 332 | |
uvrC | E | UV-irradiated lytic phage resistance | 332 | |
uvrD | E | UV-irradiated lytic phage resistance | 332 | |
uxaBC | E | Hexuronate resistance in eda | 742 | L |
uxuAB | E | Hexuronate resistance in eda | 742 | L |
uxuR | E | Methylgalacturonide as C source | 574 | C |
valS | E | Thymineless death resistance in thyA | 394 | S |
xapA | E | Fluoro(5)uracil + adenosine resistance in upp deoD xapR(Con) | 111 | L |
xapR | E | Adenosine as C source in upp deoD | 111 | C |
xapR | E | Inosine as C source in upp deoD | 111 | C |
xylE | E | Xylose resistance in fda | 175 | L |
* Alterations:
S, structure;
FBI, site of feedback inhibition;
D, increased gene dosage;
C, constitutive gene expression;
Q, altered amount of gene product;
G, gain of function;
L, loss of function.
Nº | title | link | |
---|---|---|---|
1 | Abouhamad, W. N., M. Manson, M. M. Gibson, and C. F. Higgins. 1991. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease dpp and the dipeptide-binding protein. Mol. Microbiol. 5:1035–1048. | google scholar | |
1a | Ackerman, R. S., N. R. Cozzarelli, and W. Epstein. 1974. Accumulation of toxic concentrations of methylglyoxal by Escherichia coli K-12. J. Bacteriol. 119:357–362. | google scholar | |
2 | Adhya, S., P. Cleary, and A. Campbell. 1968. A deletion analysis of prophage lambda and adjacent genetic regions. Proc. Natl. Acad. Sci. USA 61:956–962. | google scholar | |
3 | Ahmad, S. I., and R. H. Pritchard. 1969. A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Mol. Gen. Genet. 104:351–359. | google scholar | |
4 | Ahmad, S. I., and R. H. Pritchard. 1972. Location of the gene specifying cytosine deaminase in Escherichia coli. Mol. Gen. Genet. 118:323–325. | google scholar | |
5 | Alaeddinoglu, N. C., and H. P. Charles. 1979. Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization. J. Gen. Microbiol. 110:47–59. | google scholar | |
6 | Alderman, E. M., S. S. Dills, T. Melton, and W. J. Dobrogosz. 1979. Cyclic AMP regulation of the bacteriophage T6 colicin K receptor in Escherichia coli. J. Bacteriol. 140:369–376. | google scholar | |
7 | Alexander, R. R., J. M. Calvo, and M. Freundllch. 1971. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J. Bacteriol. 106:213–220. | google scholar | |
8 | Alper, M. D., and B. N. Ames. 1975. Cyclic 3′,5′-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium. J. Bacteriol. 122:1081–1090. | google scholar | |
9 | Alper, M. D., and B. N. Ames. 1975. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J. Bacteriol. 121:259–266. | google scholar | |
10 | Alper, M. D., and B. N. Ames. 1978. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J. Bacteriol. 133:149–157. | google scholar | |
11 | Amaral, D., and H. L. Kornberg. 1975. Regulation of fructose uptake by glucose in Escherichia coli. J. Gen. Microbiol. 90:157–168. | google scholar | |
12 | Ames, G. F.-L. 1964. Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. Biophys. 104:1–18. | google scholar | |
13 | Ames, G. F.-L., D. P. Biek, and E. N. Spudich. 1978. Duplications of histidine transport genes in Salmonella typhimurium and their use for the selection of deletion mutants. J. Bacteriol. 136:1094– 1108. | google scholar | |
14 | Ames, G. F.-L., and J. Lever. 1970. Components of histidine transport: histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. USA 66:1096–1103. | google scholar | |
15 | Ames, G. F.-L., K. D. Noel, H. Tabor, E. N. Spudich, K. Nikaido, J. Afong, and F. Ardeshir. 1977. Fine-structure map of the histidine transport genes in Salmonella typhimurium. J. Bacteriol. 129:1289–1297. | google scholar | |
16 | Ammer, J., M. Brennenstuhl, P. Schindler, J.-V. Holtje, and H. Zahner. 1979. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. Antimicrob. Agents Chemother. 16:801–807. | google scholar | |
17 | Anderson, J. J., and D. L. Oxender. 1977. Escherichia coli transport mutants lacking binding protein and other components of the branched-chain amino acid transport systems. J. Bacteriol. 130:384–392. | google scholar | |
18 | Anderson, J. J., S. C. Quay, and D. L. Oxender. 1976. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J. Bacteriol. 126:80–90. | google scholar | |
19 | Anderson, J. J., J. M. Wilson, and D. L. Oxender. 1979. Defective transport and other phenotypes of a periplasmic “leaky” mutant of Escherichia coli K-12. J. Bacteriol. 140:351–358. | google scholar | |
20 | Anderson, R. P., and J. R. Roth. 1977. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31:473–505. | google scholar | |
21 | Anderson, R. P., and J. R. Roth. 1978. Tandem genetic duplications in Salmonella typhimurium: amplification of the histidine operon. J. Mol. Biol. 126:53–71. | google scholar | |
22 | Andrews, J. C., and S. A. Short. 1985. Genetic analysis of Escherichia coli oligopeptide transport mutants. J. Bacteriol. 161:484–492. | google scholar | |
23 | Anton, D. 1968. Histidine regulatory mutants in Salmonella typhimurium. V. Two new classes of histidine regulatory mutants. J. Mol. Biol. 33:533–546. | google scholar | |
24 | Anton, D. N. 1981. envB mutations confer UV sensitivity to Salmonella typhimurium and UV resistance to Escherichia coli. Mol. Gen. Genet. 181:150–152. | google scholar | |
25 | Aono, R., M. Yamasaki, and G. Tamura. 1979. High and selective resistance to mecillinam in adenylate cyclase-deficient or cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 137:839–845. | google scholar | |
26 | Apirion, D. 1967. Three genes that affect Escherichia coli ribosomes. J. Mol. Biol. 30:255–275. | google scholar | |
27 | Apirion, D., and D. Schlessinger. 1968. Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J. Bacteriol. 96:768–776. | google scholar | |
28 | Archibold, E. R., and L. S. Williams. 1973. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 114:1007–1013. | google scholar | |
29 | Argast, M., D. Ludtke, T. J. Silhavy, and W. Boos. 1978. A second transport system for sn- glycerol-3-phosphate in Escherichia coli. J. Bacteriol. 136:1070–1083. | google scholar | |
30 | Armstrong, G. D., and H. Yamazaki. 1977. Isolation and characterization of catabolite repression resistant mutants of Escherichia coli. Can. J. Microbiol. 23:1384–1393. | google scholar | |
31 | Artman, M., and S. Werthamer. 1979. Use of streptomycin and cyclic adenosine 5′- monophosphate in the isolation of mutants deficient in CAP protein. J. Bacteriol. 120:542–544. | google scholar | |
32 | Ashton, D. M., G. D. Sweet, J. M. Somers, and W. W. Kay. 1980. Citrate transport in Salmonella typhimurium: studies with 2-fluoro-L-erythro-citrate as a substrate. Can. J. Biochem. 58:797–803. | google scholar | |
33 | Astvatsaturyants, G. V., A. F. Lysenkov, Y. V. Smirnov, R. and R. S. Shakulov. 1988. Mutants of Escherichia coli with impaired feedback inhibition of histidine biosynthesis. Genetika 24:1928– 1934. | google scholar | |
34 | Aswad, D., and D. E. Koshland, Jr. 1975. Isolation, characterization and complementation of Salmonella typhimurium chemotaxis mutants. J. Mol. Biol. 97:225–235. | google scholar | |
35 | Austin, E. A., J. F. Graves, L. A. Hite, C. T. Parker, and C. A. Schnaitman. 1990. Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12 insertion mutagenesis of the rfa locus. J. Bacteriol. 172:5312–5325. | google scholar | |
36 | Austin, S., and J. Scaife. 1970. A new method for selecting RNA polymerase mutants. J. Mol. Biol. 49:263–267. | google scholar | |
37 | Ayling, P. D. 1981. Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium. J. Bacteriol. 148:514–520. | google scholar | |
38 | Ayling, P. D., and E. S. Bridgeland. 1972. Methionine transport in wild-type and transport- defective mutants of Salmonella typhimurium. J. Gen. Microbiol. 73:127–141. | google scholar | |
39 | Bachi, B., and H. L. Kornberg. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J. Gen. Microbiol. 90:321–335. | google scholar | |
40 | Bachmann, B. J. 1983. Linkage map of Escherichia coli K-12, edition 7. Microbiol. Rev. 47:180–230. | google scholar | |
41 | Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 54:130–197. | google scholar | |
42 | Balbinder, E., R. Callahan III, P. P. McCann, J. C. Cordero, A. R. Weber, A. M. Smith, and F. Angelosanto. 1970. Regulatory mutants of the tryptophan operon of Salmonella typhimurium. Genetics 66:31–53. | google scholar | |
43 | Barak, Z., and C. Gilvarg. 1974. Triornithine-resistant strains of Escherichia coli. Isolation, definition, and genetic studies. J. Biol. Chem. 249:143–148. | google scholar | |
44 | Barak, Z., and C. Gilvarg. 1975. Specialized peptide transport system in Escherichia coli. J. Bacteriol. 122:1200–1207. | google scholar | |
45 | Barrett, E. L., and D. L. Riggs. 1982. Evidence for a second nitrate reductase activity that is distinct from the respiratory enzyme in Salmonella typhimurium. J. Bacteriol. 150:563–571. | google scholar | |
46 | Bassford, P. J., Jr., C. Bradbeer, R. J. Kadner, and C. A. Schnaitman. 1976. Transport of vitamin B12 in tonB mutants of Escherichia coli. J. Bacteriol. 128:242–247. | google scholar | |
47 | Bassford, P. J., Jr., R. J. Kadner, and C. A. Schnaitman. 1977. Biosynthesis of the outer membrane receptor for vitamin B12, E colicins, and bacteriophage BF23 by Escherichia coli: kinetics of phenotypic expression after the introduction of bfe+ and bfe alleles. J. Bacteriol. 129:265–275. | google scholar | |
48 | Baughman, G. A., and S. R. Fahnestock. 1979. Chloramphenicol resistance mutation in Escherichia coli which maps in the major ribosomal protein gene cluster. J. Bacteriol. 137:1315– 1323. | google scholar | |
49 | Baumberg, S. 1970. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol. Gen. Genet. 106:162–173. | google scholar | |
50 | Baumberg, S. 1976. Genetic control of arginine metabolism in prokaryotes. Second International Symposium on the Genetics of Industrial Microorganisms. Academic Press (Inc.), London. | google scholar | |
51 | Beacham, I. R., and S. Garrett. 1980. Isolation of Escherichia coli mutants (cpdB) deficient in periplasmic 2′:3′-cyclic phosphodiesterase and genetic mapping of the cpdB locus. J. Gen. Microbiol. 119:31–34. | google scholar | |
52 | Beacham, I. R., R. Kahana, L. Levy, and E. Yagil. 1973. Mutants of Escherichia coli K-12 “cryptic” or deficient in 5′-nucleotidase (uridine diphosphate-sugar hydrolase) and 3′-nucleotidase (cyclic phosphodiesterase) activity. J. Bacteriol. 116:957–964. | google scholar | |
53 | Beck, C. F., and J. L. Ingraham. 1971. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. Mol. Gen. Genet. 111:303–316. | google scholar | |
54 | Beck, C. F., J. L. Ingraham, and J. Neuhard. 1972. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. II. Uridine kinase, cytosine deaminase, and thymidine kinase. Mol. Gen. Genet. 115:208–215. | google scholar | |
55 | Begg, K. J., G. F. Hatfull, and W. D. Donachie. 1980. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell division gene ftsQ. J. Bacteriol. 144:435–437. | google scholar | |
56 | Belfort, M., and D. L. Wulff. 1973. Genetic and biochemical investigation of the Escherichia coli mutant hfl-1 which is lysogenized at high frequency by bacteriophage lambda. J. Bacteriol. 115:299– 306. | google scholar | |
57 | Beljanski, M., and M. Beljanski. 1957. Sur la formation d’enzymes respiratoires chez un mutant d’Escherichia coli streptomycino-résistant et auxotrophe pour l’hemine. Ann. Inst. Pasteur 92:396–412. | google scholar | |
58 | Beljanski, M., P. Bourgarel, and M. Beljanski. 1970. Showdomycine et biosynthèse d’ARN non complementaires de l’ADN. 1. Ann. Inst. Pasteur 118:253–276. | google scholar | |
59 | Bennett, R. L., and M. H. Malamy. 1970. Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 40:469–503. | google scholar | |
60 | Benson, C. E., S. H. Love, and C. N. Remy. 1970. Inhibition of de novo purine biosynthesis and interconversion by 6-methyl purine in Escherichia coli. J. Bacteriol. 101:872–880. | google scholar | |
61 | Berg, C. M. 1990. The branched chain amino acid transaminase genes and their products in Escherichia coli,. Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York. | google scholar | |
62 | Berg, C. M., and J. J. Rossi. 1974. Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 118:928–939. | google scholar | |
63 | Bergler, H., G. Hogenauer, and F. Thurnowsky. 1992. Sequences of the envM gene and of two mutated alleles in Escherichia coli. J. Gen. Microbiol. 138:2093–2100. | google scholar | |
64 | Berman-Kurtz, M., E. C. C. Lin, and D. P. Richey. 1971. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J. Bacteriol. 106:724–731. | google scholar | |
65 | Bernardi, A., and P. Leder. 1970. Protein biosynthesis in Escherichia coli: purification and characteristics of a mutant G factor. J. Biol. Chem. 245:4263–4268. | google scholar | |
66 | Bertino, J. B., and K. A. Stacey. 1966. A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem. J. 101:32c-33c. | google scholar | |
67 | Beverin, S., D. E. Sheppard, and S. S. Park. 1971. D-Fucose as a gratuitous inducer of the L- arabinose operon in strains of Escherichia coli B/r mutant in gene araC. J. Bacteriol. 107:79–86. | google scholar | |
68 | Bewick, M. A., and T. C. Y. Lo. 1980. Localization of the dicarboxylate binding protein in the cell envelope of Escherichia coli K12. Can. J. Biochem. 58:885–897. | google scholar | |
69 | Birch, R. G., J. M. Pemberton, and W. V. S. Basnayake. 1990. Stable albicidin resistance in Escherichia coli involves an altered outer-membrane nucleoside uptake system. J. Gen. Microbiol. 136:51–58. | google scholar | |
70 | Black, P. N. 1988. The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity in bacteriophage T2. J. Bacteriol. 170:2850–2854. | google scholar | |
71 | Blank, J., and P. Hoffee. 1972. Regulatory mutants of the deo regulon in Salmonella typhimurium. Mol. Gen. Genet. 116:291–298. | google scholar | |
72 | Bochner, B. R., H.-C. Huang, G. L. Schieven, and B. N. Ames. 1980. Positive selection for loss of tetracycline resistance. J. Bacteriol. 143:926–933. | google scholar | |
73 | Böck, A., F. Turnowsky, and G. Hoegenauer. 1982. Tiamulin resistance mutations in Escherichia coli. J. Bacteriol. 151:1253–1256. | google scholar | |
74 | Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346. | google scholar | |
75 | Bogosian, G., P. V. Haydock, and R. L. Somerville. 1983. Indolmycin-mediated inhibition and stimulation of transcription at the trp promoter of Escherichia coli. J. Bacteriol. 153:1120–1123. | google scholar | |
76 | Bollen, A., T. Cabezon, M. De Wilde, R. Villarroel, and A. Herzog. 1975. Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J. Mol. Biol. 99:795–806. | google scholar | |
77 | Boos, W., C. Bantlow, D. Benner, and E. Roller. 1983. cir, a gene conferring resistance to colicin 1, maps between mgl and fpk on the Escherichia coli chromosome. Mol. Gen. Genet. 191:401–406. | google scholar | |
78 | Borg-Oliver, S. A., D. Tarlington, and K. D. Brown. 1987. Defective regulation of the phenylalanine biosynthetic operon in mutants of the phenylalanyl transfer RNA synthetase operon. J. Bacteriol. 169:1949–1953. | google scholar | |
79 | Boronat, A., E. Caballero, and J. Aguilar. 1983. Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli. J. Bacteriol. 153:134–139. | google scholar | |
80 | Bourd, G. I., R. S. Erlagaeva, T. N. Bolshakova, and V. N. Gershanovitch. 1975. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-α-D-glucose transport. Eur. J. Biochem. 53:419–427. | google scholar | |
81 | Bourret, R. B., and M. S. Fox. 1988. Lysogenization of Escherichia coli him+, himA, and himD hosts by bacteriophage Mu. J. Bacteriol. 170:1672–1682. | google scholar | |
82 | Boy, E., and U. C. Patte. 1972. Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J. Bacteriol. 112:84–92. | google scholar | |
83 | Brana, H., J. Hubacek, D. Michaljanicova, I. Holubova, and K. Cejka. 1977. Membrane mutation affecting energy-linked functions in Escherichia coli K12. Folia Microbiol. 22:198–205. | google scholar | |
84 | Branes, L. V., J. M. Somers, and W. W. Kay. 1981. Hydrophobic peptide auxotrophy in Salmonella typhimurium. J. Bacteriol. 147:986–996. | google scholar | |
84a | Braun, V. 1989. The structurally related exbB and tolQ genes are interchangeable in conferring tonB-dependent colicin, bacteriophage, and albomycin sensitivity. J. Bacteriol. 171: 6387–6390. | google scholar | |
85 | Braun, V., J. Frenz, K. Hantke, and K. Schaller. 1980. Penetration of colicin M into cells of Escherichia coli. J. Bacteriol. 142:162–168. | google scholar | |
86 | Braun, V., K. Guenthner, K. Hantke, and L. Zimmermann. 1983. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 156:308–315. | google scholar | |
87 | Braun, V., K. Hantke, and W. Stauder. 1977. Identification of the sid outer membrane receptor protein in Salmonella typhimurium SL1024. Mol. Gen. Genet. 155:227–229. | google scholar | |
88 | Braun-Breton, C., and M. Hofnung. 1981. In vivo and in vitro functional alterations of the bacteriophage lambda receptor in lamB missense mutants of Escherichia coli K-12. J. Bacteriol. 148:845–852. | google scholar | |
89 | Breckenridge, L., and L. Gorini. 1970. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65:9–25. | google scholar | |
90 | Breeze, A. S., and E. E. Obaseiki-Ebor. 1983. Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia coli K12. J. Gen. Microbiol. 129:99–103. | google scholar | |
91 | Brenchley, J. E., C. A. Baker, and L. G. Patil. 1975. Regulation of ammonia assimilatory enzymes in Salmonella typhimurium. J. Bacteriol. 124:182–189. | google scholar | |
92 | Brickman, E., L. Soll, and J. Beckwith. 1973. Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. J. Bacteriol. 116:582–587. | google scholar | |
93 | Brochu, A., N. Brochu, T. I. Nicas, T. R. Parr, Jr., A. A. Minnick, Jr., E. K. Dolence, J. A. McKee, M. J. Miller, M. C. Lavoie, and F. Malouin. 1992. Modes of action and inhibitory activities of new siderophore-beta lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob. Agents Chemother. 36:2166–2175. | google scholar | |
94 | Brown, K. D. 1970. Formation of aromatic amino acid pools in Escherichia coli K-12. J. Bacteriol. 104:177–188. | google scholar | |
95 | Brown, K. D., and R. L. Somerville. 1971. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12. J. Bacteriol. 108:386–399. | google scholar | |
96 | Brown, T. D. K., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102:327– 336. | google scholar | |
97 | Bruce, I., J. Hardy, and K. A. Stacey. 1984. Potentiation by purines of the growth-inhibitory effects of sulphonamides on Escherichia coli and the location of the gene which mediates this effect. J. Gen. Microbiol. 130:2489–2495. | google scholar | |
98 | Bruni, C. B., V. Colantuoni, L. Sbordone, R. Cortese, and F. Blasi. 1977. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. J. Bacteriol. 130:4–10. | google scholar | |
99 | Brunner, D. P., G. S. Graham, and R. W. Treick. 1982. Exchange of colicin receptor capacity between strains of Escherichia coli sensitive or resistant to colicin K-K235. Arch. Microbiol. 131:229–234. | google scholar | |
100 | Buchstein, S. R., and D. C. Hinkle. 1982. Genetic analysis of two bacterial RNA polymerase mutants that inhibit the growth of bacteriophage T7. Mol. Gen. Genet. 188:211–218. | google scholar | |
101 | Buckel, P., A. Buchberger, A. Boeck, and H. G. Wittmann. 1977. Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol. Gen. Genet. 158:47–54. | google scholar | |
102 | Buhr, A., G. A. Daniels, and B. Erin. 1992. The glucose transporter of Escherichia coli mutants with impaired translocation activity that retain phosphorylation activity. J. Biol. Chem. 267:3847– 3851. | google scholar | |
103 | Bullas, L. R., and C. Colson. 1975. DNA restriction and modification systems in Salmonella. III. SP, a Salmonella potsdam system allelic to the SB system in Salmonella typhimurium. Mol. Gen. Genet. 139:177–188. | google scholar | |
104 | Burd, G. I., G. I. Erlagaeva, T. N. Bol’shakova, and V. N. Gershanovich. 1974. Separation of the α-methylglucoside transport and phosphorylation system in a mutant of Escherichia coli K12 resistant to catabolic repression by glucose. Dokl. Akad. Nauk SSSR 215:1243–1246. | google scholar | |
105 | Burman, L. G., and K. Nordstrom. 1971. Colicin tolerance induced by ampicillin resistance in a strain of Escherichia coli K-12. J. Bacteriol. 106:1–13. | google scholar | |
106 | Burns, R. O., J. G. Hofler, and G. H. Luginbuhl. 1979. Threonine deaminase from Salmonella typhimurium. Substrate-specific patterns of inhibition in an activation site-deficient form of the enzyme. J. Biol. Chem. 254:1074–1079. | google scholar | |
107 | Burton, K. 1977. Transport of adenine, hypoxanthine and uracil into Escherichia coli. Biochem. J. 168:195–204. | google scholar | |
108 | Buttin, G. 1963. Mécanismes regulateurs dans la biosynthèse des enzymes du metabolisme du galactose chez Escherichia coli K12. J. Mol. Biol. 7:183–205. | google scholar | |
109 | Buxton, R. S. 1971. Genetic analysis of Escherichia coli K-12 mutants resistant to bacteriophage BF23 and the E-group colicins. Mol. Gen. Genet. 113:154–156. | google scholar | |
110 | Buxton, R. S., K. Hammer-Jespersen, and T. D. Hansen. 1978. Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming λ deo+ transducing bacteriophages. J. Bacteriol. 136:668–681. | google scholar | |
111 | Buxton, R. S., K. Hammer-Jespersen, and P. Valentin-Hansen. 1980. A second purine nucleoside phosphorylase in Escherichia coli K-12. I. Xanthosine phosphorylase regulatory mutants isolated as secondary-site revertants of a deoD mutant. Mol. Gen. Genet. 179:331–340. | google scholar | |
112 | Calcott, P. H., and K. N. Calcott. 1984. Involvement of outer membrane proteins in freeze thaw resistance of Escherichia coli. Can. J. Microbiol. 30:339–344. | google scholar | |
113 | Calendar, R., B. Lindquist, G. Sironi, and A. J. Clark. 1970. Characterization of REP– mutants and their interaction with P2 phage. Virology 40:72–83. | google scholar | |
114 | Caligiuri, M. G., and R. Bauerle. 1991. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium: evidence for an amino-terminal regulatory site. J. Biol. Chem. 266:8328–8335. | google scholar | |
115 | Calvo, J. M., M. Freundlich, and H. E. Umbarger. 1969. Regulation of branched-chain amino acid biosynthesis in Salmonella typhimurium: isolation of regulatory mutants. J. Bacteriol. 97:1272– 1282. | google scholar | |
116 | Calvo, J. M., P. Margolin, and H. E. Umbarger. 1969. Operator constitutive mutations in the leucine operon of Salmonella typhimurium. Genetics 61:777–787. | google scholar | |
117 | Calvo, R. A., and J. M. Calvo. 1967. Lack of end-product inhibition and repression of leucine synthesis in a strain of Salmonella typhimurium. Science 156:1107–1109. | google scholar | |
118 | Campbell, J. H., J. Lengyel, and J. Langridge. 1973. Evolution of a second gene for β- galactosidase in Escherichia coli. Proc. Natl. Acad. Sci. USA 70:1841–1845. | google scholar | |
119 | Cannon, M., T. Cabezon, and A. Bollen. 1979. Mapping of neamine resistance: identification of two genetic loci, neaA and neaB. Mol. Gen. Genet. 130:321–326. | google scholar | |
120 | Cardelli, J., and J. Konisky. 1974. Isolation and characterization of an Escherichia coli mutant tolerant to colicins Ia and Ib. J. Bacteriol. 119:379–385. | google scholar | |
121 | Casse, F. 1970. Mapping of the gene chlB controlling membrane bound nitrate reductase and formic hydrogen-lyase activities in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 39:429– 436. | google scholar | |
122 | Casse, F., M. C. Pascal, M. Chippaux, and J. Ratouchniak. 1972. Mapping of the chlB gene in Salmonella typhimurium LT2. Mol. Gen. Genet. 119:67–70. | google scholar | |
123 | Caster, J. H. 1967. Selection of thymine-requiring strains from Escherichia coli on solid medium. J. Bacteriol. 94:1804. | google scholar | |
124 | Chai, T., and J. Foulds. 1974. Missing outer membrane protein in tolG mutants of Escherichia coli. J. Mol. Biol. 85:465–474. | google scholar | |
125 | Chai, T.-J., V. Wu, and J. Foulds. 1982. Colicin A receptor role of two Escherichia coli outer membrane proteins (OmpF protein and btuB gene product) and lipopolysaccharide. J. Bacteriol. 151:983–988. | google scholar | |
126 | Chang, G. W., D. Straus, and B. N. Ames. 1971. Enriched selection of dominant mutations: histidine operator mutations. J. Bacteriol. 107:578–579. | google scholar | |
127 | Chater, K. F., and R. J. Rowbury. 1970. A genetical study of the feedback-sensitive enzyme of methionine synthesis in Salmonella typhimurium. J. Gen. Microbiol. 63:111–120. | google scholar | |
128 | Chattopadhyay, M. K., A. K. Ghosh, and S. Sengupta. 1991. Control of methionine biosynthesis in Escherichia coli K12: a closer study with analog resistant mutants. J. Gen. Microbiol. 137:685–691. | google scholar | |
129 | Chen, M. X., N. Bouquin, V. Norris, S. Casaregola, S. J. Seror, J. Simone, and I. B. Holland. 1991. A single base change in the acceptor stem of tRNA Leu 3 confers resistance upon Escherichia coli to the calmodulin inhibitor 48/80. EMBO J. 10:3113–3122. | google scholar | |
130 | Chippaux, M., D. Giudici, A. Abou-Jaoude, and M. C. Pascal. 1978. A mutation leading to the total lack of nitrate reductase activity in Escherichia coli K12. Mol. Gen. Genet. 160:225–229. | google scholar | |
131 | Christman, M. F., R. W. Morgan, F. S. Jacobson, and B. N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762. | google scholar | |
132 | Clark, D., and J. E. Cronan, Jr. 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J. Bacteriol. 141:177–183. | google scholar | |
133 | Clark, D. P., and J. P. Beard. 1979. Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. J. Gen. Microbiol. 113:267–279. | google scholar | |
134 | Clement, J. M., C. Braun-Breton, E. Lepouce, C. Marchal, D. Perrin, H. Villarroya, and M. Hofnung. 1982. A system for genetic analysis in gene lamB: first results with lambda resistant tight mutants. Ann. Microbiol. 133A:9–20. | google scholar | |
135 | Clement, J.-M., E. Lepouce, C. Marchal, and M. Hofnung. 1983. Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda. EMBO J. 2:77–80. | google scholar | |
136 | Clifton, G., S. R. Bryant, and C. G. Skinner. 1970. N1-(substituted) pantothenamides, antimetabolites of pantothenic acid. Arch. Biochem. Biophys. 137:523–528. | google scholar | |
137 | Cohen, G., and F. Jacob. 1959. Sur la répression de la synthese des enzymes intervenant dans la formation du tryptophane chez Escherichia coli. C.R. Acad. Sci. Ser. D 248:3490–3492. | google scholar | |
138 | Cohen, G. N., J.-C. Patte, P. Truffa-Bachi, C. Sawas, and M. Doudoroff. 1965. Repression and end-product inhibition in a branched biosynthetic pathway. Mécanismes de Regulation des Activitiés Cellulaires chez les Micro-organismes. Centre National de la Recherche Scientifique, Paris. | google scholar | |
139 | Cole, S. T., and J. R Guest. 1979. Production of a soluble form of fumarate reductase by multiple gene duplications in Escherichia coli K12. Eur. J. Biochem. 102:65–71. | google scholar | |
140 | Coleman, J., S. Inouye, and M. Inouye. 1983. Isolation of mutants of the major outer membrane lipoprotein of Escherichia coli for the study of its assembly. Methods Enzymol. 97:124–129. | google scholar | |
141 | Coleman, W. G., and L. Leive. 1979. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J. Bacteriol. 139:899–910. | google scholar | |
142 | Cookson, B. T., B. M. Olivera, and J. R. Roth. 1987. Genetic characterization and regulation of the nadB locus of Salmonella typhimurium. J. Bacteriol. 169:4285–4293. | google scholar | |
143 | Cooley, W., K. Sirotkin, R. Green, and L. Snyder. 1979. A new gene of Escherichia coli K-12 whose product participates in T4 bacteriophage late gene expression: interaction of lit with the T4- induced polynucleotide 5′-kinase 3′-phosphatase. J. Bacteriol. 140:83–91. | google scholar | |
144 | Cooper, R. A. 1978. The utilization of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Arch. Microbiol. 118:199–206. | google scholar | |
145 | Corchuelo, M. C., A. Herzog, L. Desmarez, R. Lavalle, and A. Bollen. 1981. Resistance to the peptide-like antibiotic negamycin in Escherichia coli. Biochem. Biophys. Res. Commun. 100:1497– 1503. | google scholar | |
146 | Cordaro, J. C., T. Melton, J. P. Stratis, M. Atagun, C. Gladding, P. E. Hartman, and S. Roseman. 1976. Fosfomycin resistance: selection method for internal and extended deletions of the phosphoenolpyruvate:sugar phosphotransferase genes of Salmonella typhimurium. J. Bacteriol. 128:785–793. | google scholar | |
147 | Cordaro, J. C., and S. Roseman. 1972. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. J. Bacteriol. 112:17–29. | google scholar | |
148 | Cortese, R., R. Landsberg, R. A. VanderHaar, H. E. Umbarger, and B. N. Ames. 1974. Pleiotrophy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine- valine operons. Proc. Natl. Acad. Sci. USA 71:1857–1861. | google scholar | |
149 | Corwin, L. M., G. R. Fanning, F. Feldman, and P. Margolin. 1966. Mutation leading to increased sensitivity to chromium ion in Salmonella typhimurium. J. Bacteriol. 91:1509–1515. | google scholar | |
150 | Cosloy, S. D. 1973. D-Serine transport system in Escherichia coli K-12. J. Bacteriol. 114:679–684. | google scholar | |
151 | Coulton, J. W., P. Mason, D. R. Cameron, G. Carmel, R. Jean, and H. N. Rode. 1986. Protein fusions of β-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J. Bacteriol. 165:181–192. | google scholar | |
152 | Cox, E. C., and T. C. Gibson. 1974. Selection for high mutation rates in chemostats. Genetics 77:169–184. | google scholar | |
153 | Crabeel, M., D. Charlier, R. Cunin, A. Bogen, N. Glansdorf, and A. Pierard. 1975. Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. J. Bacteriol. 123:898–904. | google scholar | |
154 | Creaghan, I. T., and J. R. Guest. 1977. Suppression of the succinate requirement of lipoamide dehydrogenase mutants of Escherichia coli by mutations affecting succinate dehydrogenase activity. J. Gen. Microbiol. 102:183–194. | google scholar | |
155 | Csonka, L. N. 1981. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182:82–86. | google scholar | |
156 | Csonka, L. N. 1982. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J. Bacteriol. 151:1433–1443. | google scholar | |
157 | Cunningham, P. R., and D. P. Clark. 1986. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol. Gen. Genet. 205:487–493. | google scholar | |
158 | Curtis, S. J., and W. Epstein. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J. Bacteriol. 122:1189–1199. | google scholar | |
159 | Dabbs, E. R. 1978. Kasugamycin-dependent mutants of Escherichia coli. J. Bacteriol. 136:994– 1001. | google scholar | |
160 | Dabbs, E. R. 1982. Three additional loci of rifampicin dependence in Escherichia coli. Mol. Gen. Genet. 187:519–522. | google scholar | |
161 | Dabbs, E. R. 1983. Escherichia coli kasugamycin dependence arising from mutation at the rpsI locus. J. Bacteriol. 153:709–715. | google scholar | |
162 | Dabbs, E. R., and K. Looman. 1981. An antibiotic dependent conditional lethal mutant with a lesion affecting transcription and translation. Mol. Gen. Genet. 184:224–229. | google scholar | |
163 | Dabbs, E. R., B. Poldermans, H. Bakker, and P. H. Van Knippenberg. 1980. Biochemical characterization of ribosomes of kasugamycin-dependent mutants of Escherichia coli. FEBS Lett. 117:164–166. | google scholar | |
164 | Dame, J. B., and B. M. Shapiro. 1976. Use of polymyxin B, levallorphan, and tetracaine to isolate novel mutants of Escherichia coli. J. Bacteriol. 127:961–972. | google scholar | |
165 | Danchin, A. 1977. A new technique for selection of sensitive and auxotrophic mutants of E. coli: isolation of a strain sensitive to an excess of one-carbon metabolites. Mol. Gen. Genet. 150:293–299. | google scholar | |
166 | Danchin, A., and L. Dondon. 1980. Serine sensitivity of Escherichia coli K-12: partial characterization of a serine resistant mutant that is extremely sensitive to 2-ketobutyrate. Mol. Gen. Genet. 178:155–164. | google scholar | |
167 | Daniel, J., and A. Danchin. 1979. Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K12 toward serine. Mol. Gen. Genet. 176:343–350. | google scholar | |
168 | D’Ari, R., A. Jaffé, P. Bouloc, and A. Robin. 1988. Cyclic AMP and cell division in Escherichia coli. J. Bacteriol. 170:65–70. | google scholar | |
169 | Das, A., D. Court, and S. Adhya. 1976. Isolation and characteristics of conditional-lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. USA 73:1959–1963. | google scholar | |
170 | Das, A., B. Ghosh, S. Barik, and K. Wolska. 1985. Evidence that ribosomal protein S-10 itself is a cellular component necessary for transcription antitermination by phage lambda N protein. Proc. Natl. Acad. Sci. USA 82:4070–4074. | google scholar | |
171 | Datta, D. B., B. Arden, and U. Henning. 1977. Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. J. Bacteriol. 131:821–829. | google scholar | |
172 | Davies, J., P. Anderson, and B. D. Davis. 1965. Inhibition of protein synthesis by spectinomycin. Science 149:1096–1098. | google scholar | |
173 | Davies, J. K., and P. Reeves. 1975. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J. Bacteriol. 123:102–117. | google scholar | |
174 | Davis, E. J., J. M. Blatt, E. K. Henderson, J. J. Whittaker, and J. H. Jackson. 1977. Valine- sensitive acetohydroxy acid synthetases in Escherichia coli K-12: unique regulation modulated by multiple genetic sites. Mol. Gen. Genet. 156:239–249. | google scholar | |
175 | Davis, E. O., M. J. Jones-Mortimer, and P. J. F. Henderson. 1984. Location of a structural gene for xylose proton symport at 91 minutes on the linkage map of Escherichia coli K12. J. Biol. Chem. 259:1520–1525. | google scholar | |
176 | Daws, T. D., and J. A. Fuchs. 1984. Isolation and characterization of an Escherichia coli mutant deficient in dTMP kinase activity. J. Bacteriol. 157:440–444. | google scholar | |
177 | Dean, D. A., J. Reizer, H. Nikaido, and M. H. Saier, Jr. 1990. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate- sugar phosphotransferase system. Characterization of inducer exclusion resistant mutants and reconstitution of inducer exlusion in proteoliposomes. J. Biol. Chem. 265:21005–21010. | google scholar | |
178 | DeFelice, M., J. Guardiola, A. Lamberti, and M. Iaccarino. 1973. Escherichia coli K-12 mutants altered in the transport systems for oligo- and dipeptides. J. Bacteriol. 116:751–756. | google scholar | |
179 | Defez, R., and M. DeFelice. 1981. Cryptic operon for β-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97:11–25. | google scholar | |
180 | Del Campillo-Campbell, A., and A. Campbell. 1982. Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli. J. Bacteriol. 149:469–478. | google scholar | |
181 | Del Castillo, I., J. L. Vizan, M. Del Carmen Rodriguez-Sainz, and F. Moreno. 1991. An unusual mechanism for resistance to the antibiotic coumermycin A-1. Proc. Natl. Acad. Sci. USA 88:8860–8864. | google scholar | |
182 | Delcuve, G., T. Cabezon, A. Herzog, M. Cannon, and A. Bollen. 1978. Resistance to the aminoglycoside antibiotic neamine in Escherichia coli. A new mutant whose NeaR phenotype results from the cumulative effects of two distinct mutations. Biochem. J. 174:1–7. | google scholar | |
183 | DelGiudice, L. 1979. Method for isolating restriction- and modification-less mutants of Escherichia coli K-12. J. Bacteriol. 137:673–676. | google scholar | |
184 | Delidakis, C. E., M. C. Jones-Mortimer, and H. L. Kornberg. 1982. A mutant inducible for galactitol utilization in Escherichia coli K12. J. Gen. Microbiol. 128:601–604. | google scholar | |
185 | Delvaux, A. M., and R. Devoret. 1969. Occurrence of suppressors in caffeine-resistant mutants from Escherichia coli K12. Mutat. Res. 7:273–285. | google scholar | |
186 | Dempsey, W. B., and L. J. Arcement. 1971. Identification of the forms of vitamin B6 present in the culture media of “vitamin B6 control” mutants. J. Bacteriol. 107:580-582. | google scholar | |
187 | Dendinger, S., and W. J. Brill. 1972. Effect of the proline analogue baikiain on proline metabolism in Salmonella typhimurium. J. Bacteriol. 112:1134–1141. | google scholar | |
188 | Dendinger, S. M., L. G. Patil, and J. E. Brenchley. 1980. Salmonella typhimurium mutants with altered glutamate dehydrogenase and glutamate synthase activities. J. Bacteriol. 141:190–198. | google scholar | |
189 | Desrochers, M., L. Peloquin, and A. Sasarman. 1978. Mapping of the hemE locus in Salmonella typhimurium. J. Bacteriol. 135:1151–1153. | google scholar | |
190 | Devoret, R., and M. Blanco. 1970. Mutants of Escherichia coli K12 λ+ noninducible by thymine deprivation. I. Method of isolation and classes of mutants obtained. Mol. Gen. Genet. 107:272–280. | google scholar | |
191 | Dietz, G. W., Jr. 1978. Growth of Escherichia coli on glucosamine 6-phosphate selection of a constitutive hexose phosphate transport system mutant. Can. J. Microbiol. 24:203–208. | google scholar | |
192 | Dietz, G. W., and L. A. Heppel. 1971. Studies on the uptake of hexose phosphates. III. Mechanism of uptake of glucose 1-phosphate in Escherichia coli. J. Biol. Chem. 246:2891–2897. | google scholar | |
193 | Dila, D. K., and S. R. Maloy. 1986. Proline transport in Salmonella typhimurium putP permease mutants with altered substrate specificity. J. Bacteriol. 168:590–594. | google scholar | |
194 | DiNardo, S., K. A. Voelkel, R. Sternglanz, A. E. Reynolds, and A. Wright. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43– 51. | google scholar | |
195 | Dombou, M., T. Mizuno, and S. Mizushima. 1977. Interaction of the cytoplasmic membrane and ribosomes in Escherichia coli altered ribosomal proteins in sucrose-dependent spectinomycin- resistant mutants. Mol. Gen. Genet. 155:53–60. | google scholar | |
196 | Doskocil, J., and F. Sorm. 1970. The mode of action of 5-aza-2′-deoxycytidine in Escherichia coli. Eur. J. Biochem. 13:180–187. | google scholar | |
197 | Dover, S., and Y. S. Halpern. 1974. Genetic analysis of the γ-aminobutyrate utilization pathway in Escherichia coli K-12. J. Bacteriol. 117:494–501. | google scholar | |
198 | Downs, D., L. Waxman, A. L. Goldberg, and J. Roth. 1986. Isolation and characterization of lon mutants in Salmonella typhimurium. J. Bacteriol. 165:193–197. | google scholar | |
199 | Drexler, K., I. Riede, D. Montag, M.-L. Eschbach, and U. Henning. 1989. Receptor specificity of the Escherichia coli T-even type phage Ox2: mutational alterations in host range mutants. J. Mol. Biol. 207:797–804. | google scholar | |
200 | Droffner, M. L., and N. Yamamoto. 1992. Role of nalidixic acid in isolation of Salmonella typhimurium strains capable of growth at 48°C. Curr. Microbiol. 25:257–260. | google scholar | |
201 | Drury, L. S., and R. S. Buxton. 1988. Identification and sequencing of the Escherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2. Mol. Microbiol. 2:109–119. | google scholar | |
202 | Dubnau, E., and P. Margolin. 1972. Suppression of promoter mutations by the pleiotrophic supX mutations. Mol. Gen. Genet. 117:91–112. | google scholar | |
203 | Duncan, B. K., P. A. Rockstroh, and H. R. Warner. 1978. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J. Bacteriol. 134:1039–1045. | google scholar | |
204 | Echols, H., A. Garen, S. Garen, and A. Torriani. 1961. Genetic control of repression of alkaline phosphatase in E. coli. J. Mol. Biol. 3:425–438. | google scholar | |
205 | Eick-Helmerich, K., and V. Braun. 1989. Import of biopolymers into Escherichia coli nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J. Bacteriol. 171:5117–5126. | google scholar | |
206 | Eisenberg, M. A., B. Mee, O. Prakash, and M. R. Eisenberg. 1975. Properties of α- dehydrobiotin-resistant mutant of Escherichia coli K-12. J. Bacteriol. 122:66–72. | google scholar | |
207 | Elwell, L. P., R. Ferone, G. A. Freeman, J. A. Fyfe, J. A. Hill, P. H. Ray, C. A. Richards, S. C. Singer, V. B. Knick, J. L. Rideout, and T. P. Zimmerman. 1987. Antibacterial activity and mechanism of action of 3′ azido-3′-deoxythymidine BWA-509U. Antimicrob. Agents Chemother. 31:274–280. | google scholar | |
208 | Ely, B., D. B. Fankhauser, and P. E. Hartman. 1974. A fine structure map of the Salmonella histidine operator-promoter. Genetics 78:607–631. | google scholar | |
209 | Englesberg, E., J. Irr, J. Power, and N. Lee. 1965. Positive control of enzyme synthesis by gene C in the L-arabinose system. J. Bacteriol. 90:946–957. | google scholar | |
210 | Eriksson-Grennberg, K. G., H. G. Boman, J. A. T. Jansson, and S. Thoren. 1965. Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54–62. | google scholar | |
211 | Eriksson-Grennberg, K. G., and K. Nordstrom. 1973. Genetics and physiology of a tolE mutant of Escherichia coli K-12 and phenotypic suppression of its phenotype by galactose. J. Bacteriol. 115:1219–1222. | google scholar | |
212 | Eriksson-Grennberg, K. G., K. Nordstrom, and P. Englund. 1971. Resistance of Escherichia coli to penicillins. IX. Genetics and physiology of class II ampicillin-resistant mutants that are galactose negative or sensitive to bacteriophage C21, or both. J. Bacteriol. 108:1210–1223. | google scholar | |
213 | Essenberg, R. C. 1984. Use of homocysteic acid for selecting mutants at the gltS locus of Escherichia coli K12. J. Gen. Microbiol. 130:1311–1314. | google scholar | |
214 | Essenberg, R. C., and H. L. Kornberg. 1977. Location of the gene for hexose phosphate transport (uhp) on the chromosome of Escherichia coli. J. Gen. Microbiol. 99:157–169. | google scholar | |
215 | Ezekiel, D. H. 1965. False feedback inhibition of aromatic amino acid biosynthesis by β-2-thienyl- alanine. Biochim. Biophys. Acta 95:54–62. | google scholar | |
216 | Ezekiel, D., and J. E. Hutchins. 1968. Mutations affecting RNA polymerase associated with rifampicin resistance in Escherichia coli. Nature 220:276–277. | google scholar | |
217 | Faik, P., and H. L. Kornberg. 1973. Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Lett. 32:260–263. | google scholar | |
218 | Fangman, W. L., and F. C. Neidhardt. 1964. Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli. J. Biol. Chem. 239:1839–1843. | google scholar | |
219 | Farley, M. M., W. M. Shafer, and J. K. Spitznagel. 1988. Lipopolysaccharide structure determines ionic and hydrophobic binding of a cationic antimicrobial neutrophil granule protein. Infect. Immun. 56:1589–1592. | google scholar | |
220 | Fasano, O., and A. Parmeggiani. 1981. Altered regulation of the GTPase activity in a kirromycin resistant elongation factor Tu. Biochemistry 20:1361–1366. | google scholar | |
221 | Favre, R., A. Wiater, S. Puppo, and M. Iaccarino. 1976. Expression of a valine resistant acetolactate synthase activity mediated by the ilvO and ilvG genes of Escherichia coli K12. Mol. Gen. Genet. 143:243–252. | google scholar | |
222 | Fayerman, J. T., M. C. Vann, L S. Williams, and H. E. Umbarger. 1979. ilvU, a locus in Escherichia coli affecting the derepression of isoleucyl-tRNA synthetase and the RPC-5 chromatographic profiles of tRNAile and tRNAval. J. Biol. Chem. 254:9429–9440. | google scholar | |
223 | Ferenci, T. 1980. Methyl-α-maltoside and 5-thiomaltose: analogs transported by the Escherichia coli maltose transport system. J. Bacteriol. 144:7–11. | google scholar | |
224 | Ferenci, T., H. L. Kornberg, and J. Smith. 1971. Isolation and properties of a regulatory mutant in the hexose phosphate transport system of Escherichia coli. FEBS Lett. 13:133–136. | google scholar | |
225 | Fillingame, R. H. 1975. Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5′-triphosphate transducing system of Escherichia coli. J. Bacteriol. 124:870–883. | google scholar | |
226 | Fillingame, R. H., M. Oldenburg, and D. Fraga. 1991. Mutation of alanine-24 to serine in subunit C of the Escherichia coli F-1 F-O ATP synthase reduces reactivity of aspartyl 61 with dicyclohexylcarbodiimide. J. Biol. Chem. 266:20934–20939. | google scholar | |
227 | Filutowicz, M., Z. Ciesla, and T. Klopotowski. 1979. Interference of azide with cysteine biosynthesis in Salmonella typhimurium. J. Gen. Microbiol. 113:45–55. | google scholar | |
228 | Fimmel, A., and B. Haddock. 1979. Use of chlC-lac fusions to determine regulation of gene chlC in Escherichia coli K-12. J. Bacteriol. 138:726–730. | google scholar | |
229 | Fimmel, A. L., D. A. Jans, L. Hatch, L. B. James, F. Gibson, and G. B. Cox. 1985. The F-1 F-0 ATPase of Escherichia coli : the substitution of alanine by threonine at position 25 in the C-subunit affects function but not assembly. Biochim. Biophys. Acta 808:252–258. | google scholar | |
230 | Fimmel, A. L., and R. E. Loughlin. 1977. Isolation and characterization of cysK mutants of Escherichia coli. J. Gen. Microbiol. 103:37–43. | google scholar | |
231 | Fisher, K. E., and E. Eisenstein. 1993. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli. J. Bacteriol. 175:6605–6613. | google scholar | |
232 | Fortin, T., P. Phoenix, and G. R. Drapeau. 1990. Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. J. Bacteriol. 172:6607–6610. | google scholar | |
233 | Foster, J. W., and H. K. Hall. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172:771–778. | google scholar | |
234 | Foster, J. W., D. M. Kinney, and A. G. Moat. 1979. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J. Bacteriol. 137:1165–1175. | google scholar | |
235 | Foulds, J. 1976. tolF locus in Escherichia coli: chromosomal location and relationship to loci cmlB and tolD. J. Bacteriol. 128:604–608. | google scholar | |
236 | Foulds, J., and C. Barrett. 1973. Characterization of Escherichia coli mutants tolerant to bacteriocin JF246: two new classes of tolerant mutants. J. Bacteriol. 116:885–892. | google scholar | |
237 | Foulds, J., and T.-J. Chai. 1978. New major outer membrane protein found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J. Bacteriol. 133:1478–1483. | google scholar | |
238 | Fouts, K. E., and S. D. Barbour. 1981. Transductional mapping of ksgB and a new Tn5-induced kasugamycin resistance gene, ksgD, in Escherichia coli K-12. J. Bacteriol. 145:914–919. | google scholar | |
239 | Fradkin, J. E., and D. G. Fraenkel. 1971. 2-Keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli. J. Bacteriol. 108:1277–1283. | google scholar | |
240 | Fraenkel, D. G., and S. Banerjee. 1972. Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli. Genetics 71:481–489. | google scholar | |
241 | Franco, P. J., J. A. Eelkema, and R. J. Brooker. 1989. Isolation and characterization of thiodigalactoside resistant mutants of the lactose permease which possess an enhanced recognition for maltose. J. Biol. Chem. 264:15988–15992. | google scholar | |
242 | Franklin, N. C. 1969. Mutation in galU gene of E. coli blocks phage Pl infection. Virology 38:189–191. | google scholar | |
243 | Friedberg, I. 1972. Localization of phosphoglucose isomerase in Escherichia coli and its relation to the induction of the hexose phosphate transport system. J. Bacteriol. 112:1201–1205. | google scholar | |
244 | Friedman, D. I. 1971. A bacterial mutant affecting lambda development. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
245 | Friedman, D. I., and M. Baumann. 1976. Cooperative effects of bacterial mutations affecting λ N gene expression. 1. Isolation and characterization of a nusB mutant. Virology 73:119–127. | google scholar | |
246 | Friedman, D. I., and M. Gottesman. 1983. Lytic mode of λ development. Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
247 | Friedman, S. 1982. Bactericidal effect of 5-azacytidine on Escherichia coli carrying EcoRII restriction-modification enzymes. J. Bacteriol. 151:262–268. | google scholar | |
248 | Froehler, J., A. Rechenmacher, J. Thomale, G. Nass, and A. Boeck. 1980. Genetic analysis of mutations causing borrelidin resistance by overproduction of threonyl-transfer ribonucleic acid synthetase. J. Bacteriol. 143:1135–1141. | google scholar | |
249 | Fujita, H., S. Yamaguchi, T. Taira, and T. Iino. 1981. A simple method for the isolation of flagellar shape mutants in Salmonella. J. Gen. Microbiol. 125:213–216. | google scholar | |
250 | Furukawa, H., J.-T. Tsay, S. Jackowski, Y. Takamura, and C. O. Rock. 1993. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J. Bacteriol. 175:3723–3729. | google scholar | |
251 | Garber, B. B., and J. S. Gots. 1980. Utilization of 2,6-diaminopurine by Salmonella typhimurium. J. Bacteriol. 143:864–871. | google scholar | |
252 | Gayda, R. C., L. T. Yamamoto, and A. Markovitz. 1976. Second-site mutations in capR(lon) strains of Escherichia coli K-12 that prevent radiation sensitivity and allow bacteriophage lambda to lysogenize. J. Bacteriol. 127:1208–1216. | google scholar | |
253 | Gehring, K., A. Charbit, E. Brissaud, and M. Hofnung. 1987. Bacteriophage lambda receptor site on the Escherichia coli K-12 lamB protein. J. Bacteriol. 169:2103–2106. | google scholar | |
254 | Gellert, M., and M. L. Bullock. 1970. DNA ligase mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 67:1580–1587. | google scholar | |
255 | Gellert, M., M. H. O’Dea, T. Itoh, and J.-I. Tomizawa. 1976. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. USA 73:4474–4478. | google scholar | |
256 | Georgopoulos, C. P. 1971. Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. Natl. Acad. Sci. USA 68:2977–2981. | google scholar | |
257 | Georgopoulos, C. P. 1977. A new bacterial gene groPC which affects phage lambda DNA replication. Mol. Gen. Genet. 151:35–40. | google scholar | |
258 | Georgopoulos, C. P., R. W. Hendrix, and A. D. Kaiser. 1972. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nature New Biol. 239:38–41. | google scholar | |
259 | Georgopoulos, C. P., and I. Herskowitz. 1971. Escherichia coli mutants blocked in lambda DNA synthesis. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
260 | Georgopoulos, C. P., J. Swindle, F. Keppel, M. Ballivet, R. Bisig, and H. Eisen. 1980. Studies on the E. coli groNB (nusB) gene which affects bacteriophage λ N gene function. Mol. Gen. Genet. 179:55–61. | google scholar | |
261 | Ghysen, A., and M. Pirionio. 1972. Relationship between the N function of bacteriophage λ and host RNA polymerase. J. Mol. Biol. 65:259—272. | google scholar | |
262 | Gibson, M. M., D. A. Bagga, C. G. Miller, and M. E. Maguire. 1991. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+transport system. Mol. Microbiol. 5:2753–2762. | google scholar | |
263 | Gibson, M. M., M. Price, and C. F. Higgins. 1984. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 160:122–130. | google scholar | |
264 | Ginther, C. L., and J. L. Ingraham. 1974. Cold-sensitive mutant of Salmonella typhimurium defective in nucleoside diphosphokinase. J. Bacteriol. 118:1020–1026. | google scholar | |
265 | Giordano, G., L. Grillet, R. Rosset, J. H. Dou, and E. Azoulay. 1978. Characterization of an E. coli mutant that is sensitive to chlorate when grown aerobically. Biochem. J. 176:553–561. | google scholar | |
266 | Glaser, J. H., and J. A. DeMoss. 1972. Comparison of nitrate reductase mutants of Escherichia coli selected by alternative procedures. Mol. Gen. Genet. 116:1–10. | google scholar | |
267 | Glickman, B. W., and M. Radman. 1980. Escherichia coli mutator mutants deficient in methylation instructed DNA mismatch correction. Proc. Natl. Acad. Sci. USA 77:1063–1067. | google scholar | |
268 | Glover, S. W. 1962. Valine-resistant mutants of Escherichia coli K-12. Genet. Res. 3:448–460. | google scholar | |
269 | Gollop, N., H. Tavori, and Z. Barak. 1982. Acetohydroxy acid synthase is a target for leucine- containing peptide toxicity in Escherichia coli. J. Bacteriol. 149:387–390. | google scholar | |
270 | Gollub, E., and D. B. Sprinson. 1969. A regulatory mutation in tyrosine biosynthesis. Biochem. Biophys. Res. Commun. 35:389–395. | google scholar | |
271 | Gollub, E. G., K. P. Liu, and D. B. Sprinson. 1973. A regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium. J. Bacteriol. 115:121–128. | google scholar | |
272 | Gots, J. S., C. E. Benson, and S. R. Shumas. 1972. Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyltransferase activities by deletion mutations in Salmonella typhimurium. J. Bacteriol. 112:910–916. | google scholar | |
273 | Green, L., and C. G. Mlller. 1980. Genetic mapping of the Salmonella typhimurium pepB locus. J. Bacteriol. 143:1524–1526. | google scholar | |
274 | Greenberg, J. T., J. H. Chou, P. A. Monach, and B. Demple. 1991. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. J. Bacteriol. 173:4433– 4439. | google scholar | |
275 | Greene, R. C., J. V. Hunter, and E. H. Coch. 1973. Properties of metK mutants of Escherichia coli K-12. J. Bacteriol. 115:57–67. | google scholar | |
276 | Gruell, J. M., H. Hennecke, J. Froehler, J. Thomale, G. Nass, and A. Böck. 1979. Escherichia coli mutants overproducing phenylalanyl transfer RNA synthetase and threonyl transfer RNA synthetase. J. Bacteriol. 137:480–489. | google scholar | |
277 | Guardiola, J., M. DeFelice, T. Klopotowski, and M. Iaccarino. 1974. Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12. J. Bacteriol. 117:393 405. | google scholar | |
278 | Guardiola, J., and M. Iaccarino. 1971. Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids. J. Bacteriol. 108:1034–1044. | google scholar | |
279 | Guarneros, G., G. Machado, P. Guzman and E. Garay. 1987. Genetic and physical location of the Escherichia coli rap locus, which is essential for growth of bacteriophage lambda. J. Bacteriol. 169:5188–5192. | google scholar | |
280 | Guest, J. R. 1969. Biochemical and genetic studies with nitrate reductase C-gene mutants of Escherichia coli. Mol. Gen. Genet. 105:285–297. | google scholar | |
281 | Guest, J. R. 1979. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. J. Gen. Microbiol. 115:259–271. | google scholar | |
282 | Gupta, A., and S. Kumar. 1985. Roles of internally and externally supplied cyclic AMP in the growth response of Escherichia coli to sodium chloride. Indian J. Exp. Biol. 23:647–652. | google scholar | |
283 | Guterman, S. K., and L. Dann. 1973. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 114:1225–1230. | google scholar | |
284 | Guterman, S. K., A. Wright, and D. H. Boyd. 1975. Genes affecting coliphage BF23 and E colicin sensitivity in Salmonella typhimurium. J. Bacteriol. 124:1351–1358. | google scholar | |
285 | Guth, A., R. Engel, and B. E. Tropp. 1980. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli. J. Bacteriol. 143:538–539. | google scholar | |
286 | Hachler, H., S. P. Cohen, and S. B. Levy. 1991. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J. Bacteriol. 173: 5532– 5538. | google scholar | |
287 | Hacking, A. J., and E. C. C. Lin. 1976. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J. Bacteriol. 126:1166–1172. | google scholar | |
288 | Hadar, R., and J. Kuhn. 1977. A mutant constitutive for aromatic permease. FEBS Lett. 76:77–80. | google scholar | |
289 | Hafner, E. W., C. W. Tabor, and H. Tabor. 1977. Isolation of a metK mutant with a temperature- sensitive S-adenosylmethionine synthetase. J. Bacteriol. 132:832–840. | google scholar | |
290 | Hall, B. G. 1982. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J. Bacteriol. 151:269–273. | google scholar | |
291 | Hall, M. N., and T. J. Silhavy. 1981. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. J. Mol. Biol. 146:23–44. | google scholar | |
292 | Halpern, Y. S., and H. E. Umbarger. 1961. Utilization of L-glutamic acid and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli. J. Gen. Microbiol. 26:175–183. | google scholar | |
293 | Halsall, D. M. 1975. Strains of E. coli with defective lysine transport systems. Biochem. Genet. 13:109–124. | google scholar | |
294 | Hama, H., Y. Sumita, Y. Kakutani, M. Tsuda, and T. Tsuchiya. 1990. Target of serine inhibition in Escherichia coli. Biochem. Biophys. Res. Commun. 168:1211–1216. | google scholar | |
295 | Hammelburger, J. W., and G. A. Orr. 1983. Interaction of sn-glycerol 3-phosphorothioate with Escherichia coli: effect on cell growth and metabolism. J. Bacteriol. 156:789–799. | google scholar | |
296 | Hammer, K., K. F. Jensen, P. Poulsen, A. B. Oppenheim, and M. Gottesman. 1987. Isolation of Escherichia coli rpoB mutants resistant to killing by lambda cII protein and altered in pyrE gene attenuation. J. Bacteriol. 169:5289–5297. | google scholar | |
297 | Hancock, R. E. W., S. W. Farmer, Z. Li, and K. Poole. 1991. Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and ompF porin of Escherichia coli. Antimicrob. Agents Chemother. 35:1309–1314. | google scholar | |
298 | Hane, M. W., and T. H. Wood. 1969. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J. Bacteriol. 99:238–241. | google scholar | |
299 | Hantke, K. 1976. Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. FEBS Lett. 70:109–112. | google scholar | |
300 | Hantke, K. 1987. Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol. Gen. Genet. 210:135–139. | google scholar | |
301 | Hardaway, K. L., and C. S. Buller. 1979. Effects of ethylenediaminetetraacetate on phospholipids and outer membrane function in Escherichia coli. J. Bacteriol. 137:62–68. | google scholar | |
302 | Harkness, R. E., and V. Braun. 1990. In vitro peptidoglycan synthesis by envelopes from Escherichia coli tolM mutants is inhibited by colicin M. J. Bacteriol. 172:498–500. | google scholar | |
303 | Harrison, L. I., H. N. Christiansen, M. E. Handlogten, D. L. Oxender, and S. C. Quay. 1975. Transport of L-4-azaleucine in Escherichia coli. J. Bacteriol. 122:957–965. | google scholar | |
304 | Hasenbank, R., C. Guthrie, G. Stoffler, H. G. Wittmann, L. Rosen, and D. Apirion. 1973. Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Mol. Gen. Genet. 127:1–18. | google scholar | |
305 | Heatwole, V. M., and R. L. Somerville. 1991. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12. J. Bacteriol. 173:108–115. | google scholar | |
306 | Hedges, R. W., and K. P. Shannon. 1984. Resistance to apramycin in Escherichia coli isolated from animals: detection of a novel aminoglycoside-modifying enzyme. J. Gen. Microbiol. 130:473– 482. | google scholar | |
307 | Held, W. A., and O. H. Smith. 1970. Regulation of the Escherichia coli tryptophan operon by early reactions in the aromatic pathway. J. Bacteriol. 101:202–208. | google scholar | |
308 | Held, W. A., and O. H. Smith. 1970. Mechanism of 3-methylanthranilic acid derepression of the tryptophan operon in Escherichia coli. J. Bacteriol. 101:209–217. | google scholar | |
309 | Helling, R. B. 1968. Selection of a mutant of Escherichia coli which has high mutation rates. J. Bacteriol. 96:975–980. | google scholar | |
310 | Helling, R. B., and B. S. Adams. 1970. Nalidixic acid-resistant auxotrophs of Escherichia coli. J. Bacteriol. 104:1027–1029. | google scholar | |
311 | Helling, R. B., and J. Kukora. 1971. Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J. Bacteriol. 105:1224–1226. | google scholar | |
312 | Helser, T. L., J. E. Davies, and J. E. Dahlberg. 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biol. 235:6–9. | google scholar | |
313 | Hengge, R., T. J. Larson, and W. Boos. 1983. sn-Glycerol-3-phosphate transport in Salmonella typhimurium. J. Bacteriol. 155:186–195. | google scholar | |
314 | Henning, U., I. Hindennach, and I. Haller. 1976. The major proteins of the Escherichia coli outer cell envelope membrane: evidence for the structural gene of protein II. FEBS Lett. 61:46–48. | google scholar | |
315 | Heyde, M., and R. Portalier. 1982. New pleiotropic alkaline phosphatase-negative mutants of Escherichia coli K-12. J. Bacteriol. 151:529–533. | google scholar | |
316 | Heyde, M., and R. Portalier. 1983. Isolation and characterization of a new type of Escherichia coli K12 phoB mutants. Mol. Gen. Genet. 190:122–127. | google scholar | |
317 | Higgins, C. F., M. M. Hardie, D. Jamieson, and L. M. Powell. 1983. Genetic map of the opp (oligopeptide permease) locus of Salmonella typhimurium. J. Bacteriol. 153:830–836. | google scholar | |
318 | Hiraga, S. 1969. Operator mutants of the tryptophan operon in Escherichia coli. J. Mol. Biol. 39:159–179. | google scholar | |
319 | Hiraga, S., K. Igarashi, and T. Yura. 1967. A deoxythymidine kinase deficient mutant of Escherichia coli. I. Isolation and some properties. Biochem. Biophys. Acta 145:41–51. | google scholar | |
320 | Hiraga, S., K. Ito, T. Matsuyama, H. Ozaki, and T. Yura. 1968. 5-Methyltryptophan-resistant mutations linked with the arginine G marker in Escherichia coli. J. Bacteriol. 96:1880–1881. | google scholar | |
321 | Hirota, Y., M. Inuzuka, and M. Tomoeda. 1966. Elective selection of proline-requiring mutants. J. Bacteriol. 91:2392. | google scholar | |
322 | Hirshfield, I. N., R. Dedeken, P. C. Horn, D. A. Hopwood, and W. K. Maas. 1968. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. III. Repression of enzymes of arginine biosyntheses in arginyl-tRNA synthetase mutants. J. Mol. Biol. 35:83–93. | google scholar | |
323 | Hirshfield, I. N., and P. C. Zamecnik. 1972. Thiosine-resistant mutants of Escherichia coli K-12 with growth medium-dependent lysyl-tRNA synthetase activity. I. Isolation and physiological characterization. Biochim. Biophys. Acta 259:330–343. | google scholar | |
324 | Hobson, A. C. 1974. A norleucine-resistant mutant of Salmonella typhimurium with a possible defect in valine uptake or regulation. J. Gen. Microbiol. 82:425–429. | google scholar | |
325 | Hoffee, P. A. 1968. 2-Deoxyribose gene-enzyme complex in Salmonella typhimurium. J. Bacteriol. 95:449–457. | google scholar | |
326 | Hoffmeyer, J., and J. Neuhard. 1971. Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium. J. Bacteriol. 106:14–24. | google scholar | |
327 | Hofnung, M., and M. Schwartz. 1971. Mutations allowing growth on maltose of Escherichia coli K-12 strains with a deleted malT gene. Mol. Gen. Genet. 112:117–132. | google scholar | |
328 | Holland, J., I. B. Holland, and S. I. Ahmad. 1991. DNA damage by 8-methoxypsoralen plus near UV light, puvA and its repair in Escherichia coli: genetic analysis. Mutat. Res. 254:289–298. | google scholar | |
329 | Hooper, D. C., J. S. Wolfson, M. A. Bozza, and E. Y. Ng. 1992. Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob. Agents Chemother. 36:1151–1154. | google scholar | |
330 | Horiuchi, T., S. Horiuchi, and A. Novick. 1963. The genetic basis of hyper-synthesis of β- galactoside. Genetics 48:157–169. | google scholar | |
331 | Housley, P. R., A. D. Leavitt, and H. J. Whitfield. 1981. Genetic analysis of a temperature- sensitive Salmonella typhimurium rho mutant with an altered Rho-associated polycytidylate- dependent adenosine triphosphatase activity. J. Bacteriol. 147:13–24. | google scholar | |
332 | Howard-Flanders, P., and L. Theriot. 1962. A method for selecting radiation-sensitive mutants of Escherichia coli. Genetics 47:1219–1224. | google scholar | |
333 | Hrebenda, J., H. Heleszko, K. Brzostek, and J. Bielecki. 1985. Mutation affecting resistance of Escherichia coli K12 to nalidixic acid. J. Gen. Microbiol. 131:2285–2292. | google scholar | |
334 | Hudson, H. P., A. A. Lindberg, and B. A. D. Stocker. 1978. Lipopolysaccharide core defects in Salmonella typhimurium mutants which are resistant to Felix O phage but retain smooth character. J. Gen. Microbiol. 109:97–112. | google scholar | |
335 | Hughes, D. 1986. The isolation and mapping of EF-Tu mutations in Salmonella typhimurium. Mol. Gen. Genet. 202:108–111. | google scholar | |
336 | Hughes, K. T., B. T. Cookson, D. Ladika, B. M. Olivera, and J. R. Roth. 1983. 6- Aminonicotinamide-resistant mutants of Salmonella typhimurium. J. Bacteriol. 154:1126–1136. | google scholar | |
337 | Hughes, K. T., D. Ladika, J. R. Roth, and B. M. Olivera. 1983. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 155:213–221. | google scholar | |
338 | Hulanicka, D. 1972. Resistance to sulfate analogs in Salmonella typhimurium. Acta Biochim. Pol. 19:367–376. | google scholar | |
339 | Hulanicka, D., and T. Klopotowsi. 1972. Mutants of Salmonella typhimurium resistant to triazole. Acta Biochim. Pol. 19:251–260. | google scholar | |
340 | Hulanicka, M. D., S. G. Hallquist, N. M. Kredich, and T. Mojica-A. 1979. Regulation of O- acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J. Bacteriol. 140:141–146. | google scholar | |
341 | Hulanicka, M. D., and N. M. Kredich. 1976. A mutation affecting expression of the gene coding for serine transacetylase in Salmonella typhimurium. Mol. Gen. Genet. 148:143–148. | google scholar | |
342 | Hull, R., J. D. Klinger, and E. E. M. Moody. 1976. Isolation and characterization of mutants of Escherichia coli K12 resistant to the new aminoglycoside antibiotic, amikacin. J. Gen. Microbiol. 94:389–394. | google scholar | |
343 | Hummel, H., W. Piepersberg, and A. Böck. 1979. Analysis of lincomycin resistance mutations in Escherichia coli. Mol. Gen. Genet. 169:345–347. | google scholar | |
344 | Hussain, M., S. Ichihara, and S. Mizushima. 1980. Accumulation of glyceride containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J. Biol. Chem. 255:3707–3712. | google scholar | |
345 | Hwang, Y.-W., R. Engel, and B. E. Tropp. 1984. Correlation of 3,4-dihydroxybutyl 1- phosphonate resistance with a defect in cardiolipin synthesis in Escherichia coli. J. Bacteriol. 157:846–856. | google scholar | |
346 | Ibe, S. N., A. J. Sinskey, and D. Botstein. 1982. Genetic mapping of mutations in a highly radiation-resistant mutant of Salmonella typhimurium LT2. J. Bacteriol. 152:260–268. | google scholar | |
347 | Icho, T., and T. Iino. 1978. Isolation and characterization of motile Escherichia coli mutants resistant to bacteriophage χ. J. Bacteriol. 134:854–860. | google scholar | |
348 | Igarishi, K., S. Hiraga, and T. Yura. 1967. A deoxythymidine kinase deficient mutant of Escherichia coli. II. Mapping and transduction studies with phage φ80. Genetics 57:643–654. | google scholar | |
349 | Iino, T. 1977. Genetics of structure and function of bacterial flagella. Annu. Rev. Genet. 11:161–182. | google scholar | |
350 | Ilag, L. L., D. Jahn, G. Eggertsson, and D. Söll. 1991. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J. Bacteriol. 173:3408–3413. | google scholar | |
351 | Im, S. W. K., and J. Pittard. 1971. Phenylalanine biosynthesis in Escherichia coli K-12: mutants derepressed for chorismate mutase P-prephenate dehydratase. J. Bacteriol. 106:784–790. | google scholar | |
352 | Inoko, H., and M. Imai. 1976. Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho. Mol. Gen. Genet. 143:211–221. | google scholar | |
353 | Inoko, H., K. Shigesada, and M. Imai. 1977. Isolation and characterization of conditional-lethal rho mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 74:1162–1166. | google scholar | |
354 | Ishidsu, J.-I. 1973. Device of a method for isolation of arginine sensitive mutants in Salmonella typhimurium. Jpn. J. Genet. 48:377–379. | google scholar | |
355 | Ito, M., and Y. Ohnishi. 1981. Isolation of Escherichia coli mutants which are resistant to an inhibitor of proton-ATPase, tributyltin and also to uncouplers of oxidative phosphorylation. FEBS Lett. 136:225–230. | google scholar | |
356 | Ivell, R., O. Fasano, J.-B. Crechet, and A. Parmeggiani. 1981. Characterization of a kirromycin resistant elongation factor Tu from Escherichia coli. Biochemistry 20:1355–1361. | google scholar | |
357 | Iwakura, Y., A. Ishihama, and T. Yura. 1973. RNA polymerase mutants of Escherichia coli. II. Streptolydigin resistance and its relation to rifampicin resistance. Mol. Gen. Genet. 121:181–196. | google scholar | |
358 | Iwaya, M., R. Goldman, D. J. Tipper, B. Feingold, and J. L. Strominger. 1978. Morphology of an Escherichia coli mutant with a temperature-dependent round cell shape. J. Bacteriol. 136:1143– 1158. | google scholar | |
359 | Iwaya, M., C. W. Jones, J. Khorana, and J. L. Strominger. 1978. Mapping of the mecillinam- resistant, round morphological mutants of Escherichia coli. J. Bacteriol. 133:196–202. | google scholar | |
360 | Jackson, B. J., J.-P. Bohin, and E. P. Kennedy. 1984. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J. Bacteriol. 160:976–981. | google scholar | |
361 | Jackson, J. H., E. J. Davis, A. C. Madu, and S. E. Braxter. 1981. Three-factor reciprocal cross mapping of a gene that causes expression of feedback resistant acetohydroxy acid synthase in Escherichia coli K-12. Mol. Gen. Genet. 181:417–419. | google scholar | |
362 | Jaffe, A., Y. A. Chabbert, and E. Derlot. 1983. Selection and characterization of beta-lactam- resistant Escherichia coli K-12 mutants. Antimicrob. Agents Chemother. 23:622–625. | google scholar | |
363 | Jaffe, A., Y. A. Chabbert, and O. Semonin. 1982. Role of porin proteins ompF and ompC in the permeation of beta lactams. Antimicrob. Agents Chemother. 22:942–948. | google scholar | |
364 | Janzer, J. J., H. Stan-Lotter, and K. E. Sanderson. 1981. Isolation and characterization of hemin-permeable envelope-defective mutants of Salmonella typhimurium. Can. J. Microbiol. 27:226– 237. | google scholar | |
365 | Jegede, V. A., F. Spencer, and J. E. Brenchley. 1976. Thialysine-resistant mutant of Salmonella typhimurium with a lesion in the thrA gene. Genetics 83:619–632. | google scholar | |
366 | Jenness, D. D., and H. K. Schachman. 1980. pyrB mutations as suppressors of arginine auxotrophy in Salmonella typhimurium. J. Bacteriol. 141:33–40. | google scholar | |
367 | Jensen, K. F. 1979. Apparent involvement of purines in the control of expression of Salmonella typhimurium pyr genes: analysis of a leaky guaB mutant resistant to pyrimidine analogs. J. Bacteriol. 138:731–738. | google scholar | |
368 | Jensen, K. F., J. Neuhard, and L. Shack. 1982. RNA polymerase involvement in the control of Salmonella typhimurium pyr gene expression. Isolation and characteristics of a fluorouracil resistant mutant with high, constitutive expression of pyrB and pyrE due to a mutation in rpoBC. EMBO J. 1:69–74. | google scholar | |
369 | Jin, D. J., and C. A. Gross. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202:45–58. | google scholar | |
370 | Jochimsen, B., P. Nygaard, and T. Vestergaard. 1975. Location on the chromosome of Escherichia coli of genes governing purine metabolism: adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol. Gen. Genet. 143:85–91. | google scholar | |
371 | Jochimsen, B. U., B. Hove-Jensen, B. B. Carber, and J. S. Gots. 1985. Characteristics of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase. J. Gen. Microbiol. 131:245–252. | google scholar | |
372 | Johansson, V., A. Aarti, M. Nurminen, and P. H. Makela. 1978. Outer membrane protein- specific bacteriophages of Salmonella typhimurium. J. Gen. Microbiol. 107:183–187. | google scholar | |
373 | Johnson, B. F. 1977. Fine structure mapping and properties of mutations suppressing the lon mutation in Escherichia coli K-12 and B strains. Genet. Res. 30:273–286. | google scholar | |
374 | Johnston, H. M., and J. R. Roth. 1979. Histidine mutants requiring adenine: selection of mutants with reduced hisG expression in Salmonella typhimurium. Genetics 92:1–15. | google scholar | |
375 | Johnston, H. M., and J. R. Roth. 1981. Genetic analysis of the histidine operon control region of Salmonella typhimurium. J. Mol. Biol. 145:713—734. | google scholar | |
376 | Johnston, M. A., and H. Pivnick. 1970. Use of autocytotoxic β-D-galactosides for selective growth of Salmonella typhimurium in the presence of coliforms. Can. J. Microbiol. 16:83–89. | google scholar | |
377 | Jones-Mortimer, M., and H. L. Kornberg. 1974. Genetical analysis of fructose utilization by Escherichia coli. Proc. R. Soc. London Ser. B 187:121–131. | google scholar | |
378 | Jones-Mortimer, M. C., and H. L. Kornberg. 1976. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12. J. Gen. Microbiol. 96:383–391. | google scholar | |
379 | Jones-Mortimer, M. C., and H. L Kornberg. 1980. Amino-sugar transport systems of Escherichia coli K12. J. Gen. Microbiol. 117:369–376. | google scholar | |
380 | Josephsen, J., K. Hammer-Jespersen, and T. D. Hansen. 1983. Mapping of the gene for cytidine deaminase (cdd) in Escherichia coli K-12. J. Bacteriol. 154:72–75. | google scholar | |
381 | Joshi, A., J. Z. Siddiqui, M. Verma, and M. Chakravorty. 1982. Participation of host proteins in the morphogenesis of bacteriophage P22. Mol. Gen. Genet. 186:44–49. | google scholar | |
382 | Joshi, A., M. Verma, and M. Chakravorty. 1982. Thiolutin-resistant mutants of Salmonella typhimurium. Antimicrob. Agents Chemother. 22:541–547. | google scholar | |
383 | Juhl, M. J., and D. P. Clark. 1990. Thiophene-degrading Escherichia coli mutants possess sulfone oxidase activity and show altered resistance to sulfur-containing antibiotics. Appl. Environ. Microbiol. 56:3179–3185. | google scholar | |
384 | Jung, J. U., C. Gutierrez, and M. R. Villarejo. 1989. Sequence of an osmotically inducible lipoprotein gene. J. Bacteriol. 171:511–520. | google scholar | |
385 | Justesen, J., and J. Neuhard. 1975. pyrR identical to pyrH in Salmonella typhimurium: control of expression of the pyr genes. J. Bacteriol. 123:851–854. | google scholar | |
386 | Kadner, R. J. 1977. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J. Bacteriol. 129:207–216. | google scholar | |
387 | Kadner, R. J., K. Heller, J. W. Coulton, and V. Braun. 1980. Genetic control of hydroxamate- mediated iron uptake in Escherichia coli. J. Bacteriol. 143:256–264. | google scholar | |
388 | Kadner, R. J., and C. L Liggins. 1973. Transport of vitamin B12 in Escherichia coli: genetic studies. J. Bacteriol. 115:514–521. | google scholar | |
389 | Kadner, R. J., and D. M. Shattuck-Eidens. 1983. Genetic control of the hexose phosphate transport system of Escherichia coli: mapping of deletion and insertion mutations in the uhp region. J. Bacteriol. 155:1052–1061. | google scholar | |
390 | Kalle, C. P., and J. S. Gots. 1961. Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogues. Biochim. Biophys. Acta 53:66–173. | google scholar | |
391 | Kalman, M., D. R. Gentry, and M. Cashel. 1991. Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol. Gen. Genet. 225:379–386. | google scholar | |
392 | Kanner, B. I., and D. L. Gutnick. 1972. Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. J. Bacteriol. 111:287–289. | google scholar | |
393 | Kaplan, L., H. C. Reilly, and C. C. Stock. 1959. Action of azaserine on Escherichia coli. J. Bacteriol. 78:511–519. | google scholar | |
394 | Kaplan, S., and D. Anderson. 1968. Selection of temperature-sensitive activating enzyme mutants in Escherichia coli. J. Bacteriol. 95:991–997. | google scholar | |
395 | Kast, P., and H. Hennecke. 1991. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J. Mol. Biol. 222:99–124. | google scholar | |
396 | Katz, L. 1970. Selection of AraB and AraC mutants of Escherichia coli B/r by resistance to ribitol. J. Bacteriol. 102:593–595. | google scholar | |
397 | Kawakami, T., Y. Akizawa, T. Ishikawa, T. Shimamoto, M. Tsuda, and T. Tsuchiya. 1988. Amino acid substitutions and alteration in cation specificity in the melibiose carrier of Escherichia coli. J. Biol. Chem. 263:14276–14280. | google scholar | |
398 | Kawamoto, S., S. Tokuyama, S. Yashima, and Y. Eguchi. 1984. Genetic mapping of cold resistance gene of Escherichia coli. Agric. Biol. Chem. 48:2067–2071. | google scholar | |
399 | Kawasaki, T., and Y. Nose. 1969. Thiamine regulatory mutants in Escherichia coli. J. Biochem. 65:417–425. | google scholar | |
400 | Kay, W. W. 1972. Genetic control of the metabolism of propionate by Escherichia coli K12. Biochim. Biophys. Acta 264:508–521. | google scholar | |
401 | Kay, W. W., and H. L. Kornberg. 1969. Genetic control of the uptake of Ci-dicarboxylic acids by Escherichia coli. FEBS Lett. 3:93–96. | google scholar | |
402 | Kelker, N. E., and W. K. Maas. 1974. Selection for genetically repressible (Arg R+) strains of Escherichia coli K12 from genetically derepressed (Arg R-) mutants using acetylnorvaline. Mol. Gen. Genet. 131:131–136. | google scholar | |
403 | Kelln, R. A., and G. A. O’Donovan. 1976. Isolation and partial characteristics of an argR mutant of Salmonella typhimurium. J. Bacteriol. 128:528–535. | google scholar | |
404 | Kelln, R. A., and V. L. Zak. 1980. A mutation in Salmonella typhimurium imparting conditional resistance to 5-fluorouracil and a bioenergetic defect mapping of cad. Mol. Gen. Genet. 179:678–682. | google scholar | |
405 | Kemper, J. 1974. Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. J. Bacteriol. 117:94–99. | google scholar | |
406 | Kessler, D. P., and H. V. Rickenberg. 1964. A new method for the selection of mutants of Escherichia coli forming β-galactosidase constitutively. Biochim. Biophys. Acta 90:609–610. | google scholar | |
407 | Kier, L. D., R. M. Weppelman, and B. N. Ames. 1977. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol. 130:420–428. | google scholar | |
408 | Kier, L. D., R. M. Weppelman, and B. N. Ames. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J. Bacteriol. 138:155–161. | google scholar | |
409 | Killmann, H., and V. Braun. 1992. An aspartate deletion mutation defines a binding site of the multifunctional fhuA outer membrane receptor of Escherichia coli K-12. J. Bacteriol. 174:3479–3486. | google scholar | |
410 | Kim, K. T., and O. J. Yoo. 1987. Inhibition of coliphage N4 infection of Escherichia coli mutant defective in mannose permease. Korean J. Microbiol. 25:184–188. | google scholar | |
411 | Kleckner, N., J. Roth, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116:125–159. | google scholar | |
412 | Kline, E. L. 1972. New amino acid regulatory locus having unusual properties in heterozygous merodiploids. J. Bacteriol. 110:1127–1134. | google scholar | |
413 | Kocharyan, S. M. 1979. Positive method for selection of adenylate cyclase and cyclic adenosine 3′, 5′-monophosphate receptor protein deficient mutants of Escherichia coli K12. Biol. Zh. Arm. 32:346–351. | google scholar | |
414 | Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole E. coli chromosome: application of a new strategy for the rapid analysis and sorting of a large genomic library. Cell 50:495–508. | google scholar | |
415 | Komatsu, Y., and K. Tanaka. 1972. A showdomycin-resistant mutant of Escherichia coli K-12 with altered nucleoside transport character. Biochim. Biophys. Acta 288:390–403. | google scholar | |
416 | Komeda, Y. 1982. Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J. Bacteriol. 150:16–26. | google scholar | |
417 | Komeda, Y., M. Silverman, and M. Simon. 1977. Genetic analysis of Escherichia coli K-12 region I flagellar mutants. J. Bacteriol. 131:801–808. | google scholar | |
418 | Kornberg, H. L., and J. Smith. 1972. Genetic control of glucose uptake by Escherichia coli. FEBS Lett. 20:270–272. | google scholar | |
419 | Kornberg, H. L., and P. D. Watts. 1978. Roles of crr-gene products in regulating carbohydrate uptake by Escherichia coli. FEBS Lett. 89:329–332. | google scholar | |
420 | Korteland, J., N. Overbeeke, P. De Graaff, P. Overduin, and B. Lugtenberg. 1985. Role of the Arg158 residue of the outer membrane phoE pore protein of Escherichia coli K12 in bacteriophage TC45 recognition and in channel characteristics. Eur. J. Biochem. 152:691–697. | google scholar | |
421 | Kowit, J. D., W.-N. Choy, S. P. Champe, and A. L. Goldberg. 1976. Role and location of “protease 1” from Escherichia coli. J. Bacteriol. 128:776–784. | google scholar | |
422 | Krajewska-Grynkiewicz, K., W. Walczak, and T. Klopotowski. 1971. Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine. J. Bacteriol. 105:28–37. | google scholar | |
423 | Kramer, G. F., and B. N. Ames. 1988. Mechanisms of mutagenicity and toxicity of sodium selenite in Salmonella typhimurium. Mutat. Res. 201:169–180. | google scholar | |
424 | Kramer, G. F., J. C. Baker, and B. N. Ames. 1988. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response. J. Bacteriol. 170: 2344–2351. | google scholar | |
425 | Kraus, J., D. Söll, and K. B. Low. 1979. Glutamyl-γ-methyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metJ and metK loci. Genet. Res. 33:49–55. | google scholar | |
426 | Kricker, M., and B. G. Hall. 1984. Directed evolution of cellobiose utilization in Escherichia coli K12. Mol. Biol. Evol. 1:171–182. | google scholar | |
427 | Kuhn, A. H. U., M. L. J. Moncany, E. Kellenberger, and R. Hausmann. 1982. Involvement of the bacterial groM gene product in bacteriophage T7 reproduction. J. Virol. 41:657–673. | google scholar | |
428 | Kuhn, J., and R. L. Somerville. 1971. Mutant strains of Escherichia coli K12 that can use D- amino acids. Proc. Natl. Acad. Sci. USA 68:2484 2487. | google scholar | |
429 | Kumar, S. 1976. Properties of adenyl cyclase and cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 125:545–555. | google scholar | |
430 | Kunert, K. J., C. F. Cresswell, A. Schmidt, P. M. Mullineaux, and C. H. Foyer. 1990. Variations in the activity of glutathione reductase and the cellular glutathione content in relation to sensitivity to methyl viologen in Escherichia coli. Arch. Biochem. Biophys. 282:233–238. | google scholar | |
431 | Kuroda, M., S. De Waard, K. Mizushima, M. Tsuda, P. Postma, and T. Tsuchiya. 1992. Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium. J. Biol. Chem. 267:18336–18341. | google scholar | |
432 | Kustu, S. G., and G. F.-L. Ames. 1973. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J. Bacteriol. 116:107–113. | google scholar | |
433 | Kustu, S. G., N. C. McFarland, S. P. Hui, B. Esmon, and G. F.-L. Ames. 1979. Nitrogen control in Salmonella typhimurium: coregulation of synthesis of glutamine synthetase and amino acid transport systems. J. Bacteriol. 138:218–234. | google scholar | |
434 | Kuwano, M., D. Schlessinger, G. Rinaldi, L. Felicetti, and G. P. Tocchini-Valentini. 1971. G factor mutants of Escherichia coli: map location and properties. Biochem. Biophys. Res. Commun. 42:441–444. | google scholar | |
435 | Lakshmi, T. M., and R. B. Helling. 1976. Selection for citrate synthease deficiency in icd mutants of Escherichia coli. J. Bacteriol. 127:76–83. | google scholar | |
436 | Lambden, P. R., and J. R. Guest. 1976. A novel method for isolating chlorate-resistant mutants of Escherichia coli K12 by anaerobic selection on a lactate plus fumarate medium. J. Gen. Microbiol. 93:173–176. | google scholar | |
437 | Langley, D., and J. R. Guest. 1974. Biochemical and genetic characteristics of deletion and other mutant strains of Salmonella typhimurium LT2 lacking α-ketoacid dehydrogenase complex activities. J. Gen. Microbiol. 82:319–335. | google scholar | |
438 | Langley, D., and J. R. Guest. 1977. Biochemical studies of the α-ketoacid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J. Gen. Microbiol. 99:263–276. | google scholar | |
439 | Langley, D., and J. R. Guest. 1978. Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia coli K12: genetic characterization and regulatory properties of deletion mutants. J. Gen. Microbiol. 106:103–117. | google scholar | |
440 | Langridge, J. 1969. Mutations conferring quantitative and qualitative increases in β-galactosidase activity in Escherichia coli. Mol. Gen. Genet. 105:74–83. | google scholar | |
441 | LaRossa, R. A., and J. V. Schloss. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259:8753–8757. | google scholar | |
442 | LaRossa, R. A., and D. R. Smulski. 1984. ilvB-encloded acetolactate synthase is resistant to the herbicide sulfometuron methyl. J. Bacteriol. 160:391–394. | google scholar | |
443 | LaRossa, R. A., T. K. Van Dyk, and D. R. Smulski. 1987. Toxic accumulation of α-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J. Bacteriol. 169:1372–1378. | google scholar | |
444 | LaRossa, R. A., T. K. Van Dyk, and D. R. Smulski. 1990. A need for metabolic insulation: lessons from sulfonylurea genetics. Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York. | google scholar | |
445 | Latil, M., M. Murgier, A. Lazdunski, and C. Lazdunski. 1976. Isolation and genetic mapping of Escherichia coli aminopeptidase mutants. Mol. Gen. Genet. 148:43–47. | google scholar | |
446 | Lavina, M., A. P. Pugsley, and F. Moreno. 1986. Identification, mapping, cloning, and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K-12. J. Gen. Microbiol. 132:1685–1693. | google scholar | |
447 | Lawrence, D. A., D. A. Smith, and R. J. Rowbury. 1968. Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58:473–492. | google scholar | |
448 | Lawther, R. P., D. H. Calhoun, C. W. Adams, C. A. Hauser, J. Gray, and G. W. Hatfield. 1981. Molecular basis of valine resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 78:922–925. | google scholar | |
449 | Lazzaroni, J. C., and R. C. Portalier. 1981. Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12. J. Bacteriol. 145:1351–1358. | google scholar | |
450 | LeBlanc, D. J., and R. P. Mortlock. 1971. Metabolism of D-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 106:90–96. | google scholar | |
451 | Lee, R. S.-F., J. Pagan, S. Wilke-Mounts, and A. E. Senior. 1991. Characterization of Escherichia coli ATP synthase beta-subunit mutations using a chromosomal deletion strain. Biochemistry 30:6842–6847. | google scholar | |
452 | Lehmann, V., E. Rupprecht, and M. J. Osborn. 1977. Isolation of mutants conditionally blocked in the biosynthesis of the 3-deoxy-D-manno-octulosonic acid-lipid A part of lipopolysaccharides derived from Salmonella typhimurium. Eur. J. Biochem. 76:41–49. | google scholar | |
453 | Leifer, Z., R. Engel, and B. E. Tropp. 1977. Transport of 3,4-dihydroxybutyl-l-phosphonate, an analogue of sn-glycerol 3-phosphate. J. Bacteriol. 130:968–971. | google scholar | |
454 | Leisinger, T., D. Haas, and M. P. Hegarty. 1972. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim. Biophys. Acta 262:214–219. | google scholar | |
455 | Lemmon, R. D., J. J. Rowe, and G. J. Tritz. 1980. Isolation and characterization of mutants of Escherichia coli defective in pyridine nucleotide cycle enyzmes. Curr. Microbiol. 4:31–35. | google scholar | |
456 | Lengeler, J. 1980. Characterization of mutants of Escherichia coli K12, selected by resistance to streptozotocin. Mol. Gen. Genet. 179:49–54. | google scholar | |
457 | Lengeler, J., and H. Steinberger. 1978. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol. Gen. Genet. 164:163–169. | google scholar | |
458 | Lerman, R. D., and B. A. D. Stocker. 1981. Mutations in Salmonella typhimurium affecting synthesis of lipopolysaccharide core at high temperature. Wasmann J. Biol. 39:42–49. | google scholar | |
459 | Lester, B., and D. M. Bonner. 1957. Genetic control of raffinose utilization in Escherichia coli. J. Bacteriol. 73:544–552. | google scholar | |
460 | Levin, D. E., L. J. Marnett, and B. N. Ames. 1984. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102. Proc. Natl. Acad. Sci. USA 81:4457–4461. | google scholar | |
461 | Levine, R. A., and M. W. Taylor. 1981. Selection for purine regulatory mutants in an E. coli hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant. Mol. Gen. Genet. 181:313–318. | google scholar | |
462 | Levine, R. A., and M. W. Taylor. 1982. Mechanism of adenine toxicity in Escherichia coli. J. Bacteriol. 149:923–930. | google scholar | |
463 | LeVine, S. M., F. Ardeshir, and G. F.-L. Ames. 1980. Isolation and characterization of acetate kinase and phosphotransacetylase mutants of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 143:1081–1085. | google scholar | |
464 | Lieberman, M. A., and J.-S. Hong. 1974. A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport. Proc. Natl. Acad. Sci. USA 71:4395–4399. | google scholar | |
465 | Lieberman, M. A., M. Simon, and J.-S. Hong. 1977. Characterization of Escherichia coli mutant incapable of maintaining a transmembrane potential. J. Biol. Chem. 252:4056–4067. | google scholar | |
466 | Link, C. D., and A. M. Reiner. 1983. Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Mol. Gen. Genet. 189:337–339. | google scholar | |
467 | Liou, T.-F., M. Yoshikawa, and N. Tanaka. 1975. Alteration of ribosomal protein L5 in a thiopeptin resistant mutant of Escherichia coli. Biochem. Biophys. Res. Commun. 65:1096–1101. | google scholar | |
468 | Lipsett, M. N. 1978. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J. Bacteriol. 135:993–997. | google scholar | |
469 | Lisitsyn, N. A., E. D. Sverdlov, E. P. Moiseeva, and V. G. Nikiforov. 1985. Localization of a mutation leading to antibiotic streptolydigin resistance of E. coli RNA polymerase in the rpoB gene coding for beta-subunit of the enzyme. Bioorg. Khim. 11:132–134. | google scholar | |
470 | Livshits, V. A. 1976. Effect of 2,6-diaminopurine resistant mutations on the uptake of adenine and adenosine by adenine-requiring strains of Escherichia coli K12. Genetika 12:180–182. | google scholar | |
471 | Lomax, M. S., and G. R. Greenberg. 1968. Characteristics of the deo operon: role in thymine utilization and sensitivity to deoxyribonucleosides. J. Bacteriol. 96:501–514. | google scholar | |
472 | Lomovskaya, O., and K. Lewis. 1992. emr, an Escherichia coli locus for multidrug resistance. Proc. Natl. Acad. Sci. USA 89:8938–8942. | google scholar | |
473 | Long, W. S., C. L. Slayman, and K. B. Low. 1978. Production of giant cells of Escherichia coli. J. Bacteriol. 133:995–1007. | google scholar | |
474 | Loomis, W. F., Jr., and B. Magasanik. 1965. Genetic control of catabolite repression of the lac operon in Escherichia coli. Biochem. Biophys. Res. Commun. 20:230–234. | google scholar | |
475 | Loomis, W. F., Jr., and B. Magasanik. 1967. The catabolite repression gene of the lac operon in Escherichia coli. J. Mol. Biol. 23:487–494. | google scholar | |
476 | Lorowitz, W., and D. Clark. 1982. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J. Bacteriol. 152:935–938. | google scholar | |
477 | Low, K. B., F. Gates, T. Goldstein, and D. Söll. 1971. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J. Bacteriol. 108:742–750. | google scholar | |
478 | Luckey, M., and J. B. Neilands. 1976. Iron transport in Salmonella typhimurium LT-2: prevention, by ferrichrome, of adsorption of bacteriophages ES18 and ES18.hl to a common cell envelope receptor. J. Bacteriol. 127:1036–1037. | google scholar | |
479 | Luckey, M., J. R. Pollack, R. Wayne, B. N. Ames, and J. B. Neilands. 1972. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J. Bacteriol. 111:731–738. | google scholar | |
480 | Lutkenhaus, J. F. 1977. Role of a major outer membrane protein in Escherichia coli. J. Bacteriol. 131:631–637. | google scholar | |
481 | Maas, W. K. 1952. Pantothenate studies. II. Evidence from mutants for interference by salicylate with pantoate synthesis. J. Bacteriol. 63:227–232. | google scholar | |
482 | Maas, W. K. 1961. Repression of arginine formation. Cold Spring Harbor Symp. Quant. Biol. 26:183–190. | google scholar | |
483 | Maas, W. K. 1965. Genetic defect affecting an arginine permease and repression of arginine synthesis in E. coli. Fed. Proc. 24:1239. | google scholar | |
484 | MacPhee, D. G., V. Krishnapillai, R. J. Roantree, and B. A. D. Stocker. 1975. Mutations in Salmonella typhimurium conferring resistance to Felix O phage without loss of smooth character. J. Gen. Microbiol. 87:1–10. | google scholar | |
485 | Makela, P. H., M. Sarvas, S. Calcagno, and K. Lounatmaa. 1978. Isolation and genetic characterization of polymyxin resistant mutants of Salmonella. FEMS Microbiol. Lett. 3:323–326. | google scholar | |
486 | Makela, P. H., and B. A. D. Stocker. 1969. Genetics of polysaccharide biosynthesis. Annu. Rev. Genet. 3:291–322. | google scholar | |
487 | Maloy, S. R., and W. D. Nunn. 1981. Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol. 145:1110–1112. | google scholar | |
488 | Maloy, S. R., and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173–180. | google scholar | |
489 | Manning, P. A., A. Puspurs, and P. Reeves. 1976. Outer membrane of Escherichia coli K12: isolation of mutants with altered protein 3A by using host range mutants of bacteriophage K3. J. Bacteriol. 127:1080–1084. | google scholar | |
490 | Manning, P. A., and P. Reeves. 1976. Outer membrane of Escherichia coli K12: tsx mutants (resistant to bacteriophage T6 and colicin K) lack an outer membrane protein. Biochem. Biophys. Res. Commun. 71:466–471. | google scholar | |
491 | Manning, P. A., and P. Reeves. 1976. Outer membrane of Escherichia coli K12: differentiation of proteins 3A and 3B on acrylamide gels and further characterization of con tolG mutants. J. Bacteriol. 127:1070–1079. | google scholar | |
492 | Manning, P. A., and P. Reeves. 1978. Outer membrane proteins of Escherichia coli K12. Isolation of a common receptor protein for bacteriophage T-6 and colicin K. Mol. Gen. Genet. 158:279–286. | google scholar | |
493 | Manoil, C., and J. P. Rosenbusch. 1982. Conjugation deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane ompA protein. Mol. Gen. Genet. 187:148–156. | google scholar | |
494 | Mao, Y., and Z. Sheng. 1986. A phenylethyl alcohol resistant temperature sensitive dnaB mutant in Escherichia coli. Acta Genet. Sin. 13:81–88. | google scholar | |
495 | Marakusha, B. I., V. G. Petrovskaya, and K. I. Volkovoi. 1986. Obtaining Salmonella typhimurium and Salmonella dublin neamine resistant mutants suitable for the development of vaccines and the characterization of their biological and genetic properties. Zh. Mikrobiol. Epidemiol. Immunobiol. 1986:3–8. | google scholar | |
496 | Marcus, M., and Y. S. Halpern. 1967. Genetic analysis of glutamate transport in Escherichia coli. J. Bacteriol. 93:1409–1415. | google scholar | |
497 | Marcus, M., and Y. S. Halpern. 1969. Genetic analysis of the glutamate permease in Escherichia coli K-12. J. Bacteriol. 97:1118–1128. | google scholar | |
498 | Mark, D. F., J. W. Chang, and C. F. Richardson. 1977. Genetic mapping of trxA, a gene affecting thioredoxin in Escherichia coli K12. Mol. Gen. Genet. 155:145–152. | google scholar | |
499 | Marquardt, J. L., D. A. Siegele, R. Kolter, and C. T. Walsh. 1992. Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174:5748–5752. | google scholar | |
500 | Martinez, D., and F. Whitehouse, Jr. 1973. Selective autocytotoxicity in a model system of Escherichia coli recombinants. J. Bacteriol. 114:882–884. | google scholar | |
501 | Masters, P. S., and J.-S. Hong. 1981. Genetics of the glutamine transport system in Escherichia coli. J. Bacteriol. 147:805–819. | google scholar | |
502 | Matsuzawa, H., S. Asoh, T. Ohta, S. Tamaki, and M. Matsuhashi. 1980. Further studies on rodA mutant: a round morphological mutant of Escherichia coli K12 with wild-type penicillin-binding protein 2. Agric. Biol. Chem. 44:2937–2941. | google scholar | |
503 | Matsuzawa, H., S. Ushiyama, Y. Koyama, and T. Ohta. 1984. Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia and Ib: defect in generation of the electrochemical proton gradient. J. Bacteriol. 160:733–739. | google scholar | |
504 | Mattern, I. E., and J. Pittard. 1971. Regulation of tyrosine biosynthesis in Escherichia coli K- 12: isolation and characterization of operator mutants. J. Bacteriol. 107:8–15. | google scholar | |
505 | McCalla, D. R., C. Kaiser, and M. H. L. Green. 1978. Genetics of nitrofurazone resistance in Escherichia coli. J. Bacteriol. 133:10–16. | google scholar | |
506 | McConville, M. L., and H. P. Charles. 1979. Mutants of Escherichia coli K12 accumulating porphobilinogen: a new locus, hemC. J. Gen. Microbiol. 111:193–200. | google scholar | |
507 | McConville, M. L., and H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155–164. | google scholar | |
508 | McEwen, J., and P. Silverman. 1980. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc. Natl. Acad. Sci. USA 77:513–517. | google scholar | |
509 | Meiss, H. K., W. J. Brill, and B. Magasanik. 1969. Genetic control of histidine degradation in Salmonella typhimurium LT-2. J. Biol. Chem. 244:5382–5391. | google scholar | |
510 | Melton, T., W. Kundig, P. E. Hartman, and N. Meadow. 1976. 3-Deoxy-3-fluoro-D-glucose- resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system. J. Bacteriol. 128:794–800. | google scholar | |
511 | Menzel, R., and J. Roth. 1981. Regulation of the genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J. Mol. Biol. 148:21–44. | google scholar | |
512 | Mett, V. L., F. I. Urmeeva, N. S. Kobets, T. V. Kolganova, K. A. Aliev, and E. S. Piruzyan. 1991. Cloning and expression of a mutant EPSP-synthase gene of E. coli in transgenic plants. Biotekhnologiya 3:19–22. | google scholar | |
513 | Meynell, E. W. 1961. A phage χ, which attacks motile bacteria. J. Gen. Microbiol. 25:253–290. | google scholar | |
514 | Mikulka, T. W., B. I. Stieglitz, and J. M. Calvo. 1972. Leucyltransfer-ribonucleic acid synthetase from a wild-type and temperature-sensitive mutant of Salmonella typhimurium. J. Bacteriol. 19:584–593. | google scholar | |
515 | Mildener, B., T. P. Fondy, R. Engel, and B. E. Tropp. 1981. Effects of halo analogs of glycerol 3-phosphate and dihydroxyacetone phosphate upon Escherichia coli. Antimicrob. Agents Chemother. 19:678–681. | google scholar | |
516 | Miller, C. G., C. Heiman, and C. Yen. 1976. Mutants of Salmonella typhimurium deficient in an endopeptidase. J. Bacteriol. 127:490–497. | google scholar | |
517 | Miller, C. G., and G. Schwartz. 1978. Peptidase-deficient mutants of Escherichia coli. J. Bacteriol. 135:603–611. | google scholar | |
518 | Miller, E. S., and J. E. Brenchley. 1981. L-methionine SR-sulfoximine resistant glutamine synthetase from mutants of Salmonella typhimurium. J. Biol. Chem. 256:11307–11312. | google scholar | |
519 | Miller, H. I., and D. I. Friedman. 1977. Isolation of Escherichia coli mutants unable to support lambda integrative recombination. DNA Insertion Elements, Plasmids, and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
520 | Miller, H. I., and D. I. Friedman. 1980. An E. coli gene product required for λ site specific recombination. Cell 20:711–719. | google scholar | |
521 | Miller, H. I., A. Kikuchi, H. A. Nash, R. A. Weisberg, and D. I. Friedman. 1978. Site-specific recombination of bacteriophage λ: the role of host gene products. Cold Spring Harbor Symp. Quant. Biol. 43:1121–1126. | google scholar | |
522 | Miller, H. I., M. Kirk, and H. Echols. 1981. SOS induction and autoregulation of the himA gene for site-specific recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 78:6754–6758. | google scholar | |
523 | Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
524 | Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. | google scholar | |
525 | Miner, K. M., and L. Frank. 1974. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli. J. Bacteriol. 117:1093–1098. | google scholar | |
526 | Miyoshi, Y., and H. Yamagata. 1976. Sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. J. Bacteriol. 125:142–148. | google scholar | |
527 | Mojica, A. T. 1975. Transduction by phage PICM clr-100 in Salmonella typhimurium. Mol. Gen. Genet. 138:113 126. | google scholar | |
528 | Mojica, A. T., and E. Garcia. 1976. Growth of coliphage BF-23 on rough strains of Salmonella typhimurium. the bfe locus. Mol. Gen. Genet. 147:195–202. | google scholar | |
529 | Molnar, J., I. B. Holland, and Y. Mandi. 1977. Selection of lon mutants in Escherichia coli by treatment with phenothiazines. Genet. Res. 30:13–20. | google scholar | |
530 | Monard, D., J. Janecek, and H. V. Rickenberg. 1969. The enzymatic degradation of 3′,5′ cyclic AMP in strains of E. coli sensitive and resistant to catabolite repression. Biochem. Biophys. Res. Commun. 35:584–591. | google scholar | |
531 | Morimoto, R. I., A. Tissières, and C. Georgopoulos . 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. | google scholar | |
532 | Morimyo, M., E. Hongo, H. Hama-Inaba, and I. Machida. 1992. Cloning and characterization of the mvrC gene of Escherichia coli K12 which confers resistance against methyl viologen toxicity. Nucleic Acids Res. 20:3159–3165. | google scholar | |
533 | Morona, R., and U. Henning. 1984. Host range mutants of bacteriophage OX-2 can use two different outer membrane proteins of Escherichia coli K-12 as receptors. J. Bacteriol. 159:579–582. | google scholar | |
534 | Morona, R., and U. Henning. 1986. New locus (ttr) in Escherichia coli K-12 affecting sensitivity to bacteriophage T2 and growth on oleate as the sole carbon source. J. Bacteriol. 168:534–540. | google scholar | |
535 | Morona, R., M. Klose, and U. Henning. 1984. Escherichia coli K-12 outer membrane protein OmpA as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J. Bacteriol. 159:570–578. | google scholar | |
536 | Morona, R., and P. Reeves. 1982. The tolC locus of Escherichia coli affects the expression of three major outer membrane proteins. J. Bacteriol. 150:1016–1023. | google scholar | |
537 | Mosher, M. E., L. K. White, J. Hermolin, and R. H. Fillingame. 1985. Proton-translocating ATPase of Escherichia coli: an uncE mutation impairing coupling between F-1 and F-0 but not F-0 mediated proton translocation. J. Biol. Chem. 260:4807–4814. | google scholar | |
538 | Mount, D. W. 1977. A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. Proc. Natl. Acad. Sci. USA 74:300–304. | google scholar | |
539 | Moyed, H. S. 1960. False feedback inhibition: inhibition of tryptophan biosynthesis by 5- methyltryptophan. J. Biol. Chem. 235:1098–1102. | google scholar | |
540 | Moyed, H. S. 1961. Interference with the feed-back control of histidine biosynthesis. J. Biol. Chem. 236:2261–2267. | google scholar | |
541 | Moyed, H. S., and K. P. Bertrand. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155:768–775. | google scholar | |
542 | Muir, M. E., D. R. Hanwell, and B. J. Wallace. 1981. Characterization of a respiratory mutant of Escherichia coli with reduced uptake of aminoglycoside antibiotics. Biochim. Biophys. Acta 638:234– 241. | google scholar | |
543 | Muller-Hill, B., L. Crapo, and W. Gilbert. 1968. Mutants that make more lac repressor. Proc. Natl. Acad. Sci. USA 59:1259–1264. | google scholar | |
544 | Munch-Petersen, A., and B. Mygind. 1976. Nucleoside transport systems in Escherichia coli K12: specificity and regulation. J. Cell. Physiol. 89:551–560. | google scholar | |
545 | Munch-Petersen, A., B. Mygind, A. Nicolaisen, and N. J. Pihl. 1979. Nucleoside transport in cells and membrane vesicles from Escherichia coli K12. J. Biol. Chem. 254:3730–3737. | google scholar | |
546 | Munch-Petersen, A., P. Nygaard, K. Hammer-Jespersen, and N. Fiil. 1972. Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K12. Eur. J. Biochem. 27:208– 215. | google scholar | |
547 | Munekiyo, R., T. Tsuzuki, and M. Sekiguchi. 1979. A new locus of Escherichia coli that determines sensitivity to bacteriophage φX174. J. Bacteriol. 138:1038–1040. | google scholar | |
548 | Murata, K., K. Tani, J. Kato, and I. Chibata. 1980. Excretion of glutathione by methylglyoxal- resistant Escherichia coli. J. Gen. Microbiol. 120:545–547. | google scholar | |
549 | Murooka, Y., and T. Harada. 1981. Regulation of derepressed synthesis of arylsulfatase by tyramine oxidase in Salmonella typhimurium. J. Bacteriol. 145:796–802. | google scholar | |
550 | Myers, D. E., B. A. D. Stocker, and R. J. Roantree. 1980. Mapping of genes determining penicillin-resistance and serum-sensitivity in Salmonella enteritidis. J. Gen. Microbiol. 118:367–376. | google scholar | |
551 | Myers, R. S., and S. R. Maloy. 1988. Mutations of putP that alter the lithium sensitivity of Salmonella typhimurium. Mol. Microbiol. 2:749–755. | google scholar | |
552 | Nagelkerke, F., and P. W. Postma. 1978. 2-Deoxygalactose, a specific substrate of the Salmonella typhimurium galactose permease: its use for the isolation of galP mutants. J. Bacteriol. 133:607–613. | google scholar | |
553 | Nakamura, H. 1979. Novel acriflavine resistance genes, acrC and acrD, in Escherichia coli K-12. J. Bacteriol. 139:8–12. | google scholar | |
554 | Nakamura, H. 1980. Complementation analysis between genes determining cell division, arcC, and DNA polymerase III, dnaE, in Escherichia coli K12. Mem. Konan Univ. Sci. Ser. 25:31–33. | google scholar | |
555 | Nakamura, H., A. Hase, and K. Hirayoshi. 1987. Temperature-sensitive phase in the cell cycle of ACR-C mutants of Escherichia coli K12. Mem. Konan Univ. Sci. Ser. 34:87–98. | google scholar | |
556 | Nakamura, Y., T. Kurihara, H. Saito, and H. Uchida. 1979. σ-subunit of Escherichia coli RNA polymerase affects the function of λ N gene. Proc. Natl. Acad. Sci. USA 76:4593–4597. | google scholar | |
557 | Nakayama, H., K. Nakayama, R. Nakayama, N. Irino, Y. Nakayama, and P. C. Hanawalt. 1984. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195:474–480. | google scholar | |
558 | Nakayama, K., S. Shiota, and H. Nakayama. 1988. Thymineless death in Escherichia coli mutants deficient in the recF recombination pathway. Can. J. Microbiol. 34:905–907. | google scholar | |
559 | Nashimoto, H., and H. Uchida. 1975. Late steps in the assembly of 30s ribosomal proteins in vivo in a spectinomycin-resistant mutant of Escherichia coli. J. Mol. Biol. 96:443–453. | google scholar | |
560 | Nass, G., and J. Thomale. 1974. Alteration of structure or level of threonyl-tRNA synthetase in borrelidin-resistant mutants of Escherichia coli. FEBS Lett. 39:182–186. | google scholar | |
561 | Nazos, P. M., M. M. Mayo, T. Z. Su, J. J. Anderson, and D. L. Oxender. 1985. Identification of livG, a membrane-associated component of the branched-chain amino acid transport in Escherichia coli. J. Bacteriol. 163:1196–1202. | google scholar | |
562 | Nelson, B. W., and R. J. Roantree. 1967. Analysis of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive Salmonella mutants. J. Gen. Microbiol. 48:179–188. | google scholar | |
563 | Nelson, S. O., B. J. Scholte, and P. W. Postma. 1982. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. J. Bacteriol. 150:604 615. | google scholar | |
564 | Nelms, J., R. M. Edwards, J. Warwick, and I. Fotheringham. 1992. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition resistant variants of chorismate mutase/prephenate dehydratase. Appl. Environ. Microbiol. 58:2592–2598. | google scholar | |
565 | Neuhard, J., and K. Thomassen. 1976. Altered deoxyribonucleotide pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene. J. Bacteriol. 126:999–1001. | google scholar | |
566 | Newell, S. L., and W. J. Brill. 1972. Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation. J. Bacteriol. 111:375–382. | google scholar | |
567 | Newman, E. B., N. Malik, and C. Walter. 1982. L-Serine degradation in Escherichia coli K-12: directly isolated ssd mutants and their intragenic revertants. J. Bacteriol. 150:710–715. | google scholar | |
568 | Ng, H., and T. K. Gartner. 1963. Selection of mutants of Escherichia coli constitutive for tryptophanase. J. Bacteriol. 85:245–246. | google scholar | |
569 | Nikaido, H. 1961. Galactose sensitive mutants of Salmonella. I. Metabolism of galactoside. Biochim. Biophys. Acta 48:460 469. | google scholar | |
570 | Normark, S., T. Edlund, T. Grundstrom, S. Bergstrom, and H. Wolf-Watz. 1977. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132:912–922. | google scholar | |
571 | Norwood, W. I., and J. R. Sadler. 1977. Pseudoreversion of lactose operator-constitutive mutants. J. Bacteriol. 130:100–106. | google scholar | |
572 | Novel, G., and M. Novel. 1973. Mutants d’Escherichia coli K12 affectés pour leur croissance sur méthyl-β-D-glucuronide: localisation du gène de structure de la β-D-glucuronidase (uidA). Mol. Gen. Genet. 120:319–335. | google scholar | |
573 | Novel, M., and G. Novel. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: constitutive mutants specifically derepressed for uidA expression. J. Bacteriol. 127:406–417. | google scholar | |
574 | Novel, M., and G. Novel. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting uxu and uidA expression. J. Bacteriol. 127:418–432. | google scholar | |
575 | Nummer, B. A., S. F. Barefoot, and E. L. Kline. 1992. Effects of the flrA regulatory locus on biosynthesis and excretion of amino acids in Escherichia coli B/r. Biochem. Biophys. Res. Commun. 183:343–349. | google scholar | |
576 | Nurminen, M., K. Lounatmaa, M. Sarvas, P. H. Makela, and T. Nakae. 1976. Bacteriophage- resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins. J. Bacteriol. 127:941–955. | google scholar | |
577 | Obukowicz, M. G., N. R. Staten, and G. G. Krivi. 1992. Enhanced heterologous gene expression in novel rpoH mutants of Escherichia coli. Appl. Environ. Microbiol. 58:1511–1523. | google scholar | |
578 | Odoevskaya, E. R., and S. P. Sineolsii. 1987. Isolation and genetic study of bacterial mutations gpr blocking the replication of certain lambdoid phages. Sov. Genet. 23:432–440. | google scholar | |
579 | O’Donovan, G. A., G. Edlin, J. A. Fuchs, J. Neuhard, and E. Thomassen. 1971. Deoxycytidine triphosphate deaminase: characterization of an Escherichia coli mutant deficient in the enzyme. J. Bacteriol. 105:666–672. | google scholar | |
580 | Ohnishi, K., and K. Kiritani. 1978. Glycyl-L-leucine-resistance mutation affecting transport of branched-chain amino acids in Salmonella typhimurium. Jpn. J. Genet. 53:275–283. | google scholar | |
581 | Ohta, N., P. R. Galsworthy, and A. B. Pardee. 1971. Genetics of sulfate transport by Salmonella typhimurium. J. Bacteriol. 105:1053–1062. | google scholar | |
582 | Okada, Y., M. Wachi, K. Nagai, and M. Matsuhashi. 1992. Change of the quantity of penicillin-binding proteins and other cytoplasmic and membrane proteins by mutations of the cell shape-determination genes mreB mrec and mreD of Escherichia coli. J. Gen. Appl. Microbiol. 38:157–163. | google scholar | |
583 | Okuyama, A., M. Yoshikawa, and N. Tanaka. 1974. Alteration of ribosomal protein S2 in kasugamycin resistant mutant derived from Escherichia coli AB312. Biochem. Biophys. Res. Commun. 60:1163–1169. | google scholar | |
584 | Oliver, D. B., R. J. Cabelli, K. M. Dolan, and G. P. Jarosik. 1990. Azide resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA 87:8227–8231. | google scholar | |
585 | O’Neill, G. P., S. Thorbjanardottir, U. Michelsen, S. Palsson, D. Söll, and G. Eggertsson. 1991. ∆-Aminolevulinic acid dehydratase deficiency can cause ∆-aminolevulinate auxotrophy in Escherichia coli. J. Bacteriol. 173:94–100. | google scholar | |
586 | O’Neill, J. B., and M. Freundlich. 1972. Effects of cyclopentane glycine on metabolism in Salmonella typhimurium. J. Bacteriol. 111:510–515. | google scholar | |
587 | Oppezzo, O. J., B. Avanzati, and D. N. Anton. 1991. Increased susceptibility to beta lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium. Antimicrob. Agents Chemother. 35:1203–1207. | google scholar | |
588 | Ornellas, E. P., and B. A. D. Stocker. 1974. Relation of lipopolysaccharide character to Pl sensitivity in Salmonella typhimurium. Virology 60:491–502. | google scholar | |
589 | Orr, E., N. F. Fairweather, I. B. Holland, and R. H. Pritchard. 1979. Isolation and characterization of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol. Gen. Genet. 177:103–112. | google scholar | |
590 | Orr, J. C., D. W. Bryant, D. R. McCalla, and M. A. Quilliam. 1985. Dinitropyrene resistant Salmonella typhimurium are deficient in an acetyl-CoA acetyltransferase. Chem. Biol. Interact. 54:281–288. | google scholar | |
591 | Osborn, M. J., S. M. Rosen, L. Rothfield, and B. L. Horecker. 1962. Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella. Proc. Natl. Acad. Sci. USA 48:1831–1838. | google scholar | |
592 | Osorio, A. V., L. Servin-Gonzalez, M. Rocha, A. A. Covarrubias, and F. Bastarrachea. 1984. cis-dominant, glutamine synthetase constitutive mutations of Escherichia coli independent of activation by the glnG and glnF products. Mol. Gen. Genet. 194:114–123. | google scholar | |
593 | Ostrowski, J., and D. Hulanicka. 1981. Effect of DNA gyrase inhibitors on gene expression of the cysteine region. Mol. Gen. Genet. 181:363–366. | google scholar | |
594 | Oxender, D. L. 1972. Membrane transport. Annu. Rev. Biochem. 41:777–814. | google scholar | |
595 | Oxender, D. L., J. J. Anderson, M. M. Mayo, and S. C. Quay. 1977. Leucine binding protein and regulation of transport in Escherichia coli. J. Supramol. Struct. 6:419–432. | google scholar | |
596 | Paetz, W., and G. Nass. 1973. Biochemical and immunological characterization of threonyl- tRNA synthetase of two borrelidin resistant mutants of Escherichia coli K12. Eur. J. Biochem. 35:331–337. | google scholar | |
597 | Pai, C. H. 1974. Biochemical and genetic characterization of dehydrobiotin resistant mutants of Escherichia coli. Mol. Gen. Genet. 134:345–357. | google scholar | |
598 | Pardee, A. B., E. J. Benz, Jr., D. A. St. Peter, J. N. Krieger, M. Meuth, and H. W. Trieshmann, Jr. 1971. Hyperproduction and purification of nicotinamide deamidase, a microconstitutive enzyme of Escherichia coli. J. Biol. Chem. 246:6792–6796. | google scholar | |
599 | Pardo, D., and R. Rosset. 1977. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli. Mol. Gen. Genet. 156:267–271. | google scholar | |
600 | Park, M. H., B. B. Wong, and J. E. Lusk. 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J. Bacteriol. 126:1096–1103. | google scholar | |
601 | Parker, C. T., A. W. Kloser, C. A. Schnaitman, M. A. Stein, S. Gottesman, and B. W. Gibson. 1992. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J. Bacteriol. 174:2525–2538. | google scholar | |
602 | Pauli, G., and P. Overath. 1972. ato operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur. J. Biochem. 29:553–562. | google scholar | |
603 | Payne, J. W., J. S. Morley, P. Armitage, and G. M. Payne. 1984. Transport and hydrolysis of antibacterial peptide analogues in Escherichia coli: backbone-modified aminoxy peptides. J. Gen. Microbiol. 130:2253–2265. | google scholar | |
604 | Penninckx, M., and D. Gigot. 1979. Synthesis of a peptide form of N-δ-(phosphonoacetyl)-L- ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli L-ornithine carbamoyltransferase. J. Biol. Chem. 254:6392–6395. | google scholar | |
605 | Pierard, A., and N. Glansdorf. 1972. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Mol. Gen. Genet. 118:235–245. | google scholar | |
606 | Pierard, A., N. Glansdorf, D. Gigot, M. Crabeel, P. Halleux, and L. Thiry. 1976. Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J. Bacteriol. 127:291–301. | google scholar | |
607 | Pinn, P. A., K. J. Towner, and F. W. O’Grady. 1983. Genetic analysis of chromosomal resistance to trimethoprim derived from clinical isolates of Escherichia coli. J. Gen. Microbiol. 128:85–92. | google scholar | |
608 | Plate, C. A., and J. L. Suit. 1981. The eup genetic locus of Escherichia coli and its role in proton solute symport. J. Biol. Chem. 256:12974–12980. | google scholar | |
609 | Platz, A., and B.-M. Sjoberg. 1980. Construction and characterization of hybrid plasmids containing the Escherichia coli nrd region. J. Bacteriol. 143:561–568. | google scholar | |
610 | Pledger, W. J., and H. E. Umbarger. 1973. Isoleucine and valine metabolism in Escherichia coli. XXI. Mutations affecting derepression and valine resistance. J. Bacteriol. 114:183–194. | google scholar | |
611 | Popkin, P. S., and W. K. Maas. 1980. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J. Bacteriol. 141:485–492. | google scholar | |
612 | Portalier, R., J. Robert-Baudouy, and F. Stoeber. 1980. Regulation of Escherichia coli K-12 hexuronate system genes: exu regulon. J. Bacteriol. 143:1095–1107. | google scholar | |
613 | Postma, P. W. 1977. Galactose transport in Salmonella typhimurium. J. Bacteriol. 129:630–639. | google scholar | |
614 | Postma, P. W., and J. W. Lengeler. 1985. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49:232–269. | google scholar | |
615 | Pouyssegur, J. M., and F. R. Stoeber. 1972. Rameau degradatif commun des hexuronates chez Escherichia coli K12. Mécanisme d’induction dex enzymes assurant le métabolisme du 2-céto-3- desoxy-gluconate. Eur. J. Biochem. 30:479–494. | google scholar | |
616 | Prasad, I., B. Young, and S. Schaefler. 1973. Genetic determination of the constitutive biosynthesis of phospho-β-glucosidase A in Escherichia coli K-12. J. Bacteriol. 114:909–915. | google scholar | |
617 | Pritchard, R. H., and S. I. Ahmad. 1971. Fluorouracil and the isolation of mutants lacking uridine phosphorylase in E. coli: location of the gene. Mol. Gen. Genet. 111:84–88. | google scholar | |
618 | Prody, C. A., and J. B. Nellands. 1984. Genetic and biochemical characterization of the Escherichia coli K-12 fhuB mutation. J. Bacteriol. 157:874–880. | google scholar | |
619 | Pueyo, C., and J. Lopez-Barea. 1979. The L-arabinose-resistance test with Salmonella typhimurium strain SV3 selects forward mutations at several ara genes. Mutat. Res. 64:249–258. | google scholar | |
620 | Pugsley, A. P. 1985. Escherichia coli K12 strains for use in the identification and characterization of colicins. J. Gen. Microbiol. 131:369–376. | google scholar | |
621 | Pugsley, A. P., D. R. Lee, and C. A. Schnaitman. 1980. Genes affecting the major outer membrane proteins of Escherichia coli K12: mutations at nmpA and nmpB. Mol. Gen. Genet. 677:681–690. | google scholar | |
622 | Pugsley, A. P., F. Moreno and V. de Lorenzo. 1986. Microcin-E492-insensitive mutants of Escherichia coli. J. Gen. Microbiol. 132:3253–3260. | google scholar | |
623 | Pugsley, A. P., and P. Reeves. 1976. Iron uptake in colicin B-resistant mutants of Escherichia coli K-12. J. Bacteriol. 126:1052–1062. | google scholar | |
624 | Pugsley, A. P., and P. Reeves. 1976. Characterization of group B colicin-resistant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J. Bacteriol. 127:218–228. | google scholar | |
625 | Pugsley, A. P., and C. A. Schnaitman. 1978. Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. J. Bacteriol. 133:1181–1189. | google scholar | |
626 | Pugsley, A. P., and C. A. Schnaitman. 1978. Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. J. Bacteriol. 135:1118–1129. | google scholar | |
627 | Puyo, M. F., P. Calsou, and B. Salles. 1992. UV resistance of E. coli K12 deficient in cAMP/CRP regulation. Mutat. Res. 282:247–252. | google scholar | |
628 | Rahav-Manor, O., O. Carmel, R. Karpel, D. Taglicht, G. Glaser, S. Schuldiner, and E. Padan. 1992. NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J. Biol. Chem. 267:10433– 10438. | google scholar | |
629 | Rainwater, S., and P. M. Silverman. 1990. The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene. J. Bacteriol. 172:2456–2461. | google scholar | |
630 | Rakonjac, J., M. Milic, D. Ajdic-Predic, D. Santos, R. Ivanisevic, and D. J. Savic. 1992. A new genetic locus that affects the response of Escherichia coli K12 to novobiocin. Mol. Microbiol. 6:1547–1553. | google scholar | |
631 | Rakonjac, J., M. Milic, and D. J. Savic. 1991. cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol. Gen. Genet. 228:307–311. | google scholar | |
632 | Ramabhadran, T. V. 1976. Method for the isolation of Escherichia coli relaxed mutants, utilizing near-ultraviolet irradiation. J. Bacteriol. 127:1587–1589. | google scholar | |
633 | Ramakrishnan, T., and E. A. Adelberg. 1965. Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bacteriol. 89:654–660. | google scholar | |
634 | Ramakrishnan, V., and S. W. White. 1992. The structure of ribosomal protein S5 reveals sites of interaction with 16s RRNA. Nature 358:768–771. | google scholar | |
635 | Rancourt, D. E., J. T. Stephenson, G. A. Vickell, and J. M. Wood. 1984. Proline excretion by Escherichia coli K12. Biotechnol. Bioeng. 26:74–80. | google scholar | |
636 | Raney, M. E., and R. W. Elliott. 1978. The biochemical and genetic basis for high frequency thiomethylgalactoside resistance in lambda-lambda-dg lysogens of Escherichia coli. J. Gen. Microbiol. 104:287–298. | google scholar | |
637 | Ray, J. M., C. Yanofsky, and R. Bauerle. 1988. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J. Bacteriol. 170:5500–5506. | google scholar | |
638 | Reeve, E. C. R. 1968. Genetic analysis of some mutations causing resistance to tetracycline in Escherichia coli K12. Genet. Res. 11:303–309. | google scholar | |
639 | Reiner, A. M. 1977. Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J. Bacteriol. 132:166–173. | google scholar | |
640 | Reynolds, A. E., J. Felton, and A. Wright. 1981. Insertion of DNA activates the cryptic bgl operon in E. coli K-12. Nature 293:625–629. | google scholar | |
641 | Rick, P. D., and M. J. Osborn. 1972. Isolation of a mutant of Salmonella typhimurium dependent on D-arabinose-5-P for growth and synthesis of 3-deoxy-D-mannooctulosonate (ketodeoxyoctonate). Proc. Natl. Acad. Sci. USA 69:3756–3760. | google scholar | |
642 | Ried, G., I. Hindennach, and U. Henning. 1990. Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J. Bacteriol. 172:6048–6053. | google scholar | |
643 | Riley, M. 1993. Functions of the gene products of Escherichia coli. Microbiol. Rev. 57:862–952. | google scholar | |
644 | Roa, M. 1979. Interaction of bacteriophage K10 with its receptor, the lamB protein of Escherichia coli. J. Bacteriol. 140:680–686. | google scholar | |
645 | Robbins, A. R. 1975. Regulation of the Escherichia coli methylgalactoside transport system by gene mglD. J. Bacteriol. 123:69–74. | google scholar | |
646 | Robbins, J. C., and D. L Oxender. 1973. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J. Bacteriol. 116:12–18. | google scholar | |
647 | Roberton, A. M., P. A. Sullivan, M. C. Jones-Mortimer, and H. L. Kornberg. 1980. Two genes affecting glucarate utilization in Escherichia coli K12. J. Gen. Microbiol. 117:377–382. | google scholar | |
648 | Roberts, L. M., and E. C. R. Reeve. 1970. Two mutations giving low-level streptomycin resistance in Escherichia coli K12. Genet. Res. 16:359–365. | google scholar | |
649 | Robinson, C. L., and J. H. Jackson. 1982. New acetohydroxy acid synthetase activity from mutational activation of a cryptic gene in Escherichia coli K-12. Mol. Gen. Genet. 186:240–246. | google scholar | |
650 | Rodriguez, S. B., and J. L. Ingraham. 1983. Location on the Salmonella typhimurium chromosome of the gene encoding nucleoside diphosphokinase (ndk). J. Bacteriol. 153:1101–1103. | google scholar | |
651 | Roeder, N., and R. L Somerville. 1979. Cloning the trpR gene. Mol. Gen. Genet. 176:361–368. | google scholar | |
652 | Roehl, R. A., and R. T. Vinopal. 1980. Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12. J. Bacteriol. 142:120–130. | google scholar | |
653 | Rolfe, B., and K. Onodera. 1971. Demonstration of missing membrane proteins in a colicin- tolerant mutant of Escherichia. Biochem. Biophys. Res. Commun. 44:767–773. | google scholar | |
654 | Rood, J. I., A. J. Laird, and J. W. Williams. 1980. Cloning of the Escherichia coli K12 dihydrofolate reductase EC-1.5.1.3 gene following phage Mu mediated transposition. Gene 8:255– 266. | google scholar | |
655 | Rosen, B. P. 1973. Basic amino acid transport in Escherichia coli: properties of canavanine- resistant mutants. J. Bacteriol. 116:627–635. | google scholar | |
656 | Rosen, S. M., L. D. Zeleznick, D. Fraenkel, I. M. Wiener, M. J. Osborn, and B. L. Horecker. 1965. Characterization of the cell wall lipopolysaccharide of a mutant of Salmonella typhimurium lacking phosphomannose isomerase. Biochem. Z. 342:375–386. | google scholar | |
657 | Roth, J. R., and B. N. Ames. 1966. Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having altered histidyl-tRNA synthetase. J. Mol. Biol. 22:325–334. | google scholar | |
658 | Roth, J. R., D. N. Anton, and P. E. Hartman. 1966. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J. Mol. Biol. 22:305–323. | google scholar | |
659 | Rowbury, R. J., M. Goodson, and A. D. Wallace. 1992. The phoE porin and transmission of the chemical stimulus for induction of acid resistance acid habituation in Escherichia coli. J. Appl. Bacteriol. 72:233–243. | google scholar | |
660 | Rudd, K. E., and R. Menzel. 1987. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc. Natl. Acad. Sci. USA 84:517–521. | google scholar | |
661 | Rudd, K. E., W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and S. G. Satterfield. 1991. Mapping sequenced E. coli genes by computer: software, strategies and examples. Nucleic Acids Res. 19:637–647. | google scholar | |
662 | Russell, R. R. B., and A. J. Pittard. 1971. Mutants of Escherichia coli unable to make protein at 42°C. J. Bacteriol. 108:790–798. | google scholar | |
663 | Ryals, J., R.-Y. Hsu, M. N. Lipsett, and H. Bremer. 1982. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J. Bacteriol. 151:899–904. | google scholar | |
664 | Saedler, H., A. Gullon, L. Fiethen, and P. Starlinger. 1968. Negative control of the galactose operon in E. coli. Mol. Gen. Genet. 102:79–88. | google scholar | |
665 | Saier, M. H., Jr., H. Straud, L. S. Massman, J. J. Judice, M. J. Newman, and B. U. Feucht. 1978. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol. 133:1358–1367. | google scholar | |
666 | Saito, H., and C. C. Richardson. 1981. Genetic analysis of gene 1.2 of bacteriophage T7: isolation of a mutant of Escherichia coli unable to support the growth of T7 gene 1.2 mutants. Virology 37:343–351. | google scholar | |
667 | Saito, H., and H. Uchida. 1977. Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J. Mol. Biol. 113:1–25. | google scholar | |
668 | Sakka, K., T. Watanabe, R. Beers, and H. C. Wu. 1987. Isolation and characterization of a new globomycin-resistant dnaE mutant of Escherichia coli. J. Bacteriol. 169:3400–3408. | google scholar | |
669 | Salanitro, J. P., and W. S. Wegener. 1971. Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system. J. Bacteriol. 18:893–900. | google scholar | |
670 | Samsonov, V. V., E. R. Odoevskaia, and S. P. Sineokii. 1992. Cloning and complementation analysis of the Escherichia coli gpr locus, influencing DNA replication of certain lambdoid phages. Genetika 28:39–45. | google scholar | |
671 | Sanchez-Anzaldo, F. J., and F. Bastarrachea. 1974. Genetic characterization of streptomycin- resistant and dependent mutants of Escherichia coli K-12. Mol. Gen. Genet. 130:47–64. | google scholar | |
672 | Sanchez-Anzaldo, F. J., R. Gomez, and F. Bastarrachea. 1979. Paromoycin resistant mutants of Escherichia coli K12. I. Cross-resistance to streptomycin and synergism of the mixture of both antibiotics. Rev. Latinoam. Microbiol. 21:121–128. | google scholar | |
673 | Sanderson, K. E., and J. R. Roth. 1983. Linkage map of Salmonella typhimurium, edition VI. Microbiol. Rev. 47:410–453. | google scholar | |
674 | Sanderson, K. E., and J. R. Roth. 1988. Linkage map of Salmonella typhimurium, edition VII. Microbiol. Rev. 52:485–532. | google scholar | |
675 | Sanderson, K. E., and B. A. D. Stocker. 1981. Gene rfaH, which affects lipopolysaccharide core structure in Salmonella typhimurium, is required also for expression of F-factor functions. J. Bacteriol. 146:535–541. | google scholar | |
676 | Sanderson, K. E., J. Van Wyngaarten, O. Luderitz, and B. A. D. Stocker. 1974. Rough mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide core. Can. J. Microbiol. 20:1127–1134. | google scholar | |
677 | Santangelo, J. D., D. T. Jones, and D. R. Woods. 1991. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes. J. Bacteriol. 173:1088–1095. | google scholar | |
678 | Sarrhy, A., S. Michaels, and J. Beckwith. 1981. Deletion map of the Escherichia coli structural gene for alkaline phosphatase, phoA. J. Bacteriol. 145:288–292. | google scholar | |
679 | Sasarman, A., P. Chartrand, M. Lavoie, D. Tardif, R. Proschek, and C. Lapointe. 1979. Mapping of a new hem gene in Escherichia coli K12. J. Gen. Microbiol. 113:297–303. | google scholar | |
680 | Sasarman, A., P. Chartrand, R. Proschek, M. Desrochers, D. Tardif, and C. Lapointe. 1975. Uroporphyrin-accumulating mutant of Escherichia coli K-12. J. Bacteriol. 124:1205–1212. | google scholar | |
681 | Sasarman, A., and M. Desrochers. 1976. Uroporphyrinogen III cosynthase-deficient mutant of Salmonella typhimurium LT2. J. Bacteriol. 128:717–721. | google scholar | |
682 | Sasarman, A., M. Desrochers, S. Sonea, K. E. Sanderson, and M. Surdeanu. 1976. Porphobilogen-accumulating mutants of Salmonella typhimurium LT2. J. Gen. Microbiol. 94:359– 366. | google scholar | |
683 | Sasarman, A., K. E. Sanderson, M. Surdeanu, and S. Sonea. 1970. Hemin-deficient mutants of Salmonella typhimurium. J. Bacteriol. 102:531–536. | google scholar | |
684 | Sastry, S. S., and R. Jayaraman. 1984. Nitrofurantoin-resistant mutants of Escherichia coli: isolation and mapping. Mol. Gen. Genet. 196:379–380. | google scholar | |
685 | Satre, M., C. Klein, and P. V. Vignais. 1978. Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin. J. Bacteriol. 134:17–23. | google scholar | |
686 | Schaefler, S. 1967. Inducible system for the utilization of β-glucosides in Escherichia coli. I. Active transport and utilization of β-glucosides. J. Bacteriol. 93:254–263. | google scholar | |
687 | Schellenberg, G. D., and C. E. Furlong. 1977. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J. Biol. Chem. 252:9055–9064. | google scholar | |
688 | Schleif, R. 1969. Isolation and characterization of a streptolydigin resistant RNA polymerase. Nature 223:1068–1069. | google scholar | |
689 | Schwartz, J. H., W. K. Mass, and E. J. Simon. 1959. An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to L-canavanine and D-serine. Biochim. Biophys. Acta 32:582–583. | google scholar | |
690 | Schwarz, T. F. R., S. M. Yeats, and P. Connolly. 1981. Altered transcriptional termination in a rifampicin-resistant mutant of Escherichia coli which inhibits the growth of bacteriophage T7. Mol. Gen. Genet. 183:181–186. | google scholar | |
691 | Schweizer, H., M. Argast, and W. Boos. 1982. Characteristics of a binding protein-dependent transport system for sn-glycerol 3-phosphate in Escherichia coli that is part of the pho regulon. J. Bacteriol. 150:1154–1163. | google scholar | |
692 | Schweizer, H., T. Grussenmeyer, and W. Boos. 1982. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol 3-phosphate transport system of Escherichia coli. J. Bacteriol. 150:1164–1171. | google scholar | |
693 | Sedgwick, B., and P. Robins. 1980. Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: mutants deficient in thiols and mutants constitutive for the adaptive response. Mol. Gen. Genet. 180:85–90. | google scholar | |
694 | Servin-Gonzalez, L., M. Ortiz, A. Gonzalez, and F. Bastarrachea. 1987. glnA mutations conferring resistance to methylammonium in Escherichia coli K12. J. Gen. Microbiol. 133:1631– 1639. | google scholar | |
695 | Shakulov, R. S., V. A. Livshits, G. G. Zaigraeva, L. F. Lideman, and T. T. D. Mukhamed. 1978. Partial suppression of the action of the gene relA in cells of fusr mutants of Escherichia coli K12. Sov. Genet. 14:632–640. | google scholar | |
696 | Shaw, L, F. Grau, H. R. Kaback, J. S. Hong, and C. Walsh. 1975. Vinylglycolate resistance in Escherichia coli. J. Bacteriol. 121:1047–1055. | google scholar | |
697 | Sheldon, R., and S. Brenner. 1976. Regulatory mutants of dihydrofolate reductase in Escherichia coli K12. Mol. Gen. Genet. 147:91–97. | google scholar | |
698 | Sheppard, D. E. 1964. Mutants of Salmonella typhimurium resistant to feedback inhibition by L- histidine. Genetics 50:611–623. | google scholar | |
699 | Shifrin, S., B. N. Ames, and G. F.-L. Ames. 1966. Effect of the α-hydrazino analogue of histidine on histidine transport and arginine biosynthesis. J. Biol. Chem. 241:3424–3429. | google scholar | |
700 | Shimmin, L. C., D. Vanderwel, R. E. Harkness, B. R. Currie, C. A. Galloway, and E. E. Ishiguro. 1984. Temperature-sensitive beta-lactam-tolerant mutants of Escherichia coli. J. Gen.Microbiol. 122:351–354. | google scholar | |
701 | Shive, W., and J. Macow. 1946. Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. I. Some transformations involving aspartic acid. J. Biol. Chem. 162:451–462. | google scholar | |
702 | Siden, I., and H. G. Boman. 1983. Escherichia coli mutants with an altered sensitivity to cecropin D. J. Bacteriol. 154:170–176. | google scholar | |
703 | Siegel, E. C., and V. Bryson. 1967. Mutator gene of Escherichia coli B. J. Bacteriol. 94:38–47. | google scholar | |
704 | Sigmund, C. D., M. Ettayebi, and E. A. Morgan. 1984. Antibiotic resistance mutations in 16s and 23s ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12:4653–4663. | google scholar | |
705 | Signer, C. E., G. R. Smith, R. Cortese, and B. N. Ames. 1972. Mutant tRNAhis ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238:72–74. | google scholar | |
706 | Silbert, D. F., G. R. Fink, and B. N. Ames. 1966. Histidine regulatory mutants in Salmonella typhimurium. III. A class of regulatory mutants deficient in tRNA for histidine. J. Mol. Biol. 22:335– 347. | google scholar | |
707 | Silhavy, T. J., I. Hartig-Beecken, and W. Boos. 1976. Periplasmic protein related to the sn- glycerol 3-phosphate transport system of Escherichia coli. J. Bacteriol. 126:951–958. | google scholar | |
708 | Silver, S., P. Johnseine, E. Whitney, and D. Clark. 1972. Manganese-resistant mutants of Escherichia coli: physiological and genetic studies. J. Bacteriol. 110:186–195. | google scholar | |
709 | Silverman, M., and M. Simon. 1973. Genetic analysis of flagellar mutants in Escherichia coli. J. Bacteriol. 113:105–113. | google scholar | |
710 | Silverman, M., and M. I. Simon. 1977. Bacterial flagella. Annu. Rev. Microbiol. 31:397–419. | google scholar | |
711 | Silverman, P., K. Nat, J. McEwen, and R. Birchman. 1980. Selection of Escherichia coli K-12 mutants that prevent expression of F-plasmid functions. J. Bacteriol. 143:1519–1523. | google scholar | |
712 | Silverstone, A. E., M. Goman, and J. G. Scaife. 1972. ALT: a new factor involved in the synthesis of RNA by Escherichia coli. Mol. Gen. Genet. 118:223–234. | google scholar | |
713 | Simons, R W., P. A. Egan, H. T. Chute, and W. D. Nunn. 1980. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in fadR. J. Bacteriol. 142:621–632. | google scholar | |
714 | Sivasubramanian, N., and R. Jayaraman. 1980. Mapping of two transcription mutations (tlnI and tlnII) conferring thiolutin resistance, adjacent to dnaZ and rho in Escherichia coli. Mol. Gen. Genet. 180:609–615. | google scholar | |
715 | Slater, A. C., M. C. Jones-Mortimer, and H. L Kornberg. 1981. L-sorbose phosphorylation in Escherichia coli K-12. Biochim. Biophys. Acta 646:365–367. | google scholar | |
716 | Slayman, C. W. 1973. The genetic control of membrane transport. Curr. Top. Membr. Transp. 4:1–174. | google scholar | |
717 | Sledziewska, E., and D. Hulanicka. 1978. Method of isolation of cysteine constitutive mutants of the cysteine regulon in Salmonella typhimurium. Mol. Gen. Genet. 165:289–293. | google scholar | |
718 | Smith, D. R., and J. M. Calvo. 1979. Regulation of dihydrofolate reductase EC-1.5.1.3 synthesis in Escherichia coli. Mol. Gen. Genet. 175:31–38. | google scholar | |
719 | Smith, D. R., J. I. Rood, P. I. Bird, M. K, Sneddon, J. M. Calvo, and J. F. Morrison. 1982. Amplification and modification of dihydrofolate reductase EC-1.5.1.3 in Escherichia coli nucleotide sequence of fol genes from mutationally altered plasmids. J. Biol. Chem. 257:9043–9048. | google scholar | |
720 | Smith, J. M., F. J. Smith, and H. E. Umbarger. 1979. Mutations affecting the formation of acetohydroxyacid synthase II in Escherichia coli K12. Mol. Gen. Genet. 169:299–314. | google scholar | |
721 | Smith, T. F., and J. R. Sadler. 1971. The nature of lactose operator constitutive mutations. J. Mol. Biol. 59:273–305. | google scholar | |
722 | Solomon, E., and E. C. C. Lin. 1972. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. J. Bacteriol. 111:566–574. | google scholar | |
723 | Somers, J. M., and W. W. Kay. 1983. Genetic fine structure of the tricarboxylate transport (tct) locus of Salmonella typhimurium. Mol. Gen. Genet. 190:20–26. | google scholar | |
724 | Somers, J. M., G. D. Sweet, and W. W. Kay. 1981. Fluorocitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol. Gen. Genet. 181:338–345. | google scholar | |
725 | Sparling, P. F., and E. Blackman. 1973. Mutation to erythromycin dependence in Escherichia coli K-12. J. Bacteriol. 116:74–83. | google scholar | |
726 | Sparling, P. F., Y. Ikeya, and D. Elliot. 1973. Two genetic loci for resistance to kasugamycin in Escherichia coli. J. Bacteriol. 113:704–710. | google scholar | |
727 | Sprague, G. F., Jr., R. M. Bell, and J. E. Cronan, Jr. 1975. A mutant of Escherichia coli auxotrophic for organic phosphates: evidence for two defects in inorganic phosphate transport. Mol. Gen. Genet. 143:71–77. | google scholar | |
728 | Springer, S. E., and R. E. Huber. 1973. Sulfate and selenate uptake and transport in wild and in two selenate-tolerant strains of Escherichia coli K-12. Arch. Biochem. Biophys. 156:595–603. | google scholar | |
729 | Sprinson, D. B., E. G. Gollub, R. C. Hu, and K.-P. Liu. 1976. Regulation of tyrosine and phenylalanine biosynthesis in Salmonella. Acta Microbiol. Acad. Sci. Hung. 23:167–170. | google scholar | |
730 | Stacey, K. A., and E. Simson. 1965. Improved method for the isolation of thymine-requiring mutants of Escherichia coli. J. Bacteriol. 90:554 555. | google scholar | |
731 | Stalker, D. M., W. R. Hiatt, and L. Comai. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260:4724–4728. | google scholar | |
732 | Stalmach, M. E., S. Grothe, and J. M. Wood. 1983. Two proline porters in Escherichia coli K-12. J. Bacteriol. 156:481–486. | google scholar | |
733 | Staskawicz, B. J., and N. J. Panopoulos. 1980. Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease. J. Bacteriol. 142:474–479. | google scholar | |
734 | Staudenbauer, W. L. 1976. Replication of Escherichia coli DNA in vitro: inhibition by oxolinic acid. Eur. J. Biochem. 62:491–497. | google scholar | |
735 | Stauffer, G. V., and J. E. Brenchley. 1977. Influence of methionine biosynthesis on serine transhydroxymethylase (EC 2.1.2.1) regulation in Salmonella typhimurium LT2. J. Bacteriol. 129:740–749. | google scholar | |
736 | Steffes, C., J. Ellis, J. Wu, and B. P. Rosen. 1992. The lysP gene encodes the lysine-specific permease. J. Bacteriol. 174:3242–3249. | google scholar | |
737 | Stern, J. R., and R. W. O’Brien. 1969. Oxidation of D-malic and β-alkyl malic acids by wild- type and mutant strains of Salmonella typhimurium and by Aerobacter aerogenes. J. Bacteriol. 98:147–151. | google scholar | |
738 | Stevens, F. J., and T. T. Wu. 1976. Growth on D-lyxose of a mutant strain of Escherichia coli K12 using a novel isomerase and enzymes related to D-xylose metabolism. J. Gen. Microbiol. 97:257–265. | google scholar | |
739 | Stewart, V., and C. H. MacGregor. 1982. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J. Bacteriol. 151:788–799. | google scholar | |
740 | Stitt, B. L., H. R. Revel, I. Lielausis, and W. B. Wood. 1980. Role of the host cell in bacteriophage T4 development. II. Characterization of host mutants that have pleiotropic effects on T4 growth. J. Virol. 35:775–789. | google scholar | |
741 | Stocker, B. A. D., M. Nurminen, and P. H. Makela. 1979. Mutants defective in the 33K outer membrane protein of Salmonella typhimurium. J. Bacteriol. 139:376–383. | google scholar | |
742 | Stoeber, F., A. Lagarde, G. Nemoz, G. Novel, M. Novel, R Portalier, J. Pouyssegur, and J. Robert-Baudouy. 1974. Le métabolisme des hexuronides et des hexuronates chez Escherichia coli K12: aspects physiologiques et génétiques de sa régulation. Biochimie 56:199–213. | google scholar | |
743 | Stouthamer, A. H. 1969. A genetical and biochemical study of chlorate-resistant mutants of Salmonella typhimurium. Antonie van Leeuwenhoek J. Microbiol. Serol. 35:505–521. | google scholar | |
744 | Stouthamer, A. H., and C. W. Bettenhaussen. 1970. Mapping a gene causing resistance to chlorate in Salmonella typhimurium. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:555–565. | google scholar | |
745 | Straus, D. S., and G. R. Hoffman. 1975. Selection for a large genetic duplication in Salmonella typhimurium. Genetics 80:227–237. | google scholar | |
746 | Stuttard, C. 1972. Location of trpR mutations in the serB-thr region of Salmonella typhimurium. J. Bacteriol. 111:368–374. | google scholar | |
747 | Sullivan, M. A., and R. M. Bock. 1985. Isolation and characterization of antisuppressor mutations in Escherichia coli. J. Bacteriol. 161:377–384. | google scholar | |
748 | Sullivan, M. A., J. F. Cannon, F. H. Webb, and R. M. Bock. 1985. Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J. Bacteriol. 161:368–376. | google scholar | |
749 | Summers, W. C., and P. Raskin. 1993. A method for selection of mutations at the tdk locus in Escherichia coli. J. Bacteriol. 175:6049–6051. | google scholar | |
750 | Sun, T.-P., and R. E. Webster. 1986. fii, a bacterial locus required for filamentous phage infection, and its relation to colicin-tolerant tolA and tolB. J. Bacteriol. 165:107–115. | google scholar | |
751 | Sun, T.-P., and R. E. Webster. 1987. Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J. Bacteriol. 169:2667–2674. | google scholar | |
752 | Sundararajan, T. A. 1963. Interference with glycerokinase induction in mutants of E. coli accumulating gal-1-P. Proc. Natl. Acad. Sci. USA 50:463–469. | google scholar | |
753 | Sunshine, M., M. Feiss, J. Stuart, and J. Yochem. 1977. A new host gene (groPC) necessary for lambda DNA replication. Mol. Gen. Genet. 151:27–34. | google scholar | |
754 | Sunshine, M. G., and B. Sauer. 1975. A bacterial mutation blocking P2 phage late gene expression. Proc. Natl. Acad. Sci. USA 72:2770–2774. | google scholar | |
755 | Sutton, A., T. Newman, M. Francis, and M. Freundlich. 1981. Valine-resistant Escherichia coli K-12 strains with mutations in the ilvB operon. J. Bacteriol. 148:998–1001. | google scholar | |
756 | Swedberg, C., S. Castensson, and O. Skold. 1979. Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog. J. Bacteriol. 137:129–136. | google scholar | |
757 | Szentirmai, A., M. Szentirmai, and H. E. Umbarger. 1968. Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J. Bacteriol. 95:1672–1679. | google scholar | |
758 | Takahashi, H. 1978. Genetic and physiological characterization of Escherichia coli K12 mutants (tabC) which induce the abortive infection of bacteriophage T4. Virology 87:256–265. | google scholar | |
759 | Tamaki, S., H. Matsuzawa, and M. Matsuhashi. 1980. Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J. Bacteriol. 141:52–57. | google scholar | |
760 | Tamaki, S., T. Sato, and M. Matsuhashi. 1971. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J. Bacteriol. 105:968–975. | google scholar | |
761 | Tanaka, N., G. Kawano, and T. Kinoshita. 1971. Chromosomal location of a fusidic acid resistant marker in Escherichia coli. Biochem. Biophys. Res. Commun. 42:564–567. | google scholar | |
762 | Tang, C.-T., R. Engel, and B. E. Tropp. 1977. L-Glyceraldehyde 3-phosphate, a bactericidal agent. Antimicrob. Agents Chemother. 11:147–153. | google scholar | |
763 | Tapio, S., and L. A. Isaksson. 1990. Antisuppression by mutations in elongation factor Tu. Eur. J. Biochem. 188:339–346. | google scholar | |
764 | Thakar, J. H., and G. P. Kalle. 1968. Defective guanine uptake in an 8-azaguanine-resistant mutant of Salmonella typhimurium. J. Bacteriol. 95:458–464. | google scholar | |
765 | Thèze, J., D. Margarita, G. N. Cohen, F. Borne, and J. C. Patte. 1974. Mapping of the structural genes of the three aspartokinases and the two homoserine dehydrogenases of Escherichia coli K-12. J. Bacteriol. 117:133–143. | google scholar | |
766 | Thirion, J. P., and M. Hofnung. 1982. On some genetic aspects of phage λ resistance in E. coli K12. Genetics 71:207–216. | google scholar | |
767 | Thomas, G., and A. Favre. 1977. Genetic mapping of a mutant exhibiting no near ultraviolet induced growth delay and lacking 4-thiouridine in its tRNA. C. R. Acad. Sci. 284:2285–2288. | google scholar | |
768 | Thorbjarnardottir, S. H., R. A. Magnusdottir, and C. Eggertsson. 1978. Mutations determining generalized resistance to aminoglycoside antibiotics in Escherichia coli. Mol. Gen. Genet. 161:89–98. | google scholar | |
769 | Thorne, C. M., and L. M. Corwin. 1975. Mutations affecting aromatic amino acid transport in Escherichia coli and Salmonella typhimurium. J. Gen. Microbiol. 90:203–216. | google scholar | |
770 | Tomas, J. M., and W. W. Kay. 1986. Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob. Agents Chemother. 30:127–131. | google scholar | |
771 | Tommassen, J., and B. Lugtenberg. 1981. Localization of phoE, the structural gene for outer membrane protein E in Escherichia coli K-12. J. Bacteriol. 147:118–123. | google scholar | |
772 | Toone, W. M., K. E. Rudd, and J. D. Friesen. 1992. Mutations causing aminotriazole resistance and temperature sensitivity reside in gyrB, which encodes the β subunit of DNA gyrase. J. Bacteriol. 174:5479–5481. | google scholar | |
773 | Torriani, A., and F. Rothman. 1961. Mutants of Escherichia coli constitutive for alkaline phosphatase. J. Bacteriol. 81:835–836. | google scholar | |
774 | Tosa, T., and L. I. Pizer. 1971. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J. Bacteriol. 106:972–982. | google scholar | |
775 | Tristram, H., and S. Neale. 1968. The activity and specificity of the proline permease in wild- type and analogue-resistant strains of Escherichia coli. J. Gen. Microbiol. 50:121–137. | google scholar | |
776 | Trun, N. J., and S. Gottesman. 1990. On the bacterial cell cycle: Escherichia coli mutants with altered ploidy. Genes Dev. 4:2036–2047. | google scholar | |
777 | Trun, N. J., and S. Gottesman. 1991. Characterization of Escherichia coli mutants with altered ploidy. Res. Microbiol. 142:195–200. | google scholar | |
778 | Tsay, J.-T., C. O. Rock, and S. Jackowski. 1992. Overproduction of beta ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J. Bacteriol. 174:508– 513. | google scholar | |
779 | Udaka, S., and H. S. Moyed. 1963. Inhibition of parental and mutant xanthosine 5′-phosphate aminases by psicofuranine. J. Biol. Chem. 238:2797–2803. | google scholar | |
780 | Umbarger, H. E. 1969. Regulation of the biosynthesis of the branched-chain amino acids. Curr. Top. Cell. Regul. 1:57–76. | google scholar | |
781 | Umbarger, H. E. 1971. Metabolite analogs as genetic and biochemical probes. Adv. Genet. 16:119–140. | google scholar | |
782 | Umbarger, H. E. 1987. Biosynthesis of the branched-chain amino acids. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C. | google scholar | |
783 | Uzan, M., and A. Danchin. 1976. A rapid test for the relA mutation in E. coli. Biochem. Biophys. Res. Commun. 69:751–758. | google scholar | |
784 | Uzan, M., and A. Danchin. 1978. Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA mutants. Mol. Gen. Genet. 165:21–30. | google scholar | |
785 | Vaara, M. 1981. Increased outer membrane resistance to ethylenediamine-tetraacetate and cations in novel lipid A mutants. J. Bacteriol. 148: 426–434. | google scholar | |
786 | Vaara, M., and T. Vaara. 1981. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19:578–583. | google scholar | |
787 | Vaara, M., T. Vaara, M. Jensen, I. Helander, M. Nurminen, E. T. Rietschel, and P. H. Makela. 1981. Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett. 129:145–149. | google scholar | |
788 | Vaara, M., T. Vaara, and M. Sarvas. 1979. Decreased binding of polymyxin by polymyxin- resistant mutants of Salmonella typhimurium. J. Bacteriol. 139:664–667. | google scholar | |
789 | Vallari, D. S., and S. Jackowski. 1988. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J. Bacteriol. 170:3961–3966. | google scholar | |
790 | Vallari, D. S., and C. O. Rock. 1987. Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli. J. Bacteriol. 169:5795–5800. | google scholar | |
791 | Van Alphen, L., B. Lugtenberg, R. Van Boxtel, A.-M. Hack, C. Verhoef, and L. Havekes. 1979. meoA is the structural gene for outer membrane protein C of Escherichia coli K12. Mol. Gen. Genet. 169:147–156. | google scholar | |
792 | Van Alphen, W., B. Lugtenberg, and W. Berendsen. 1976. Heptose-deficient mutants of Escherichia coli K12 deficient in up to three major outer membrane proteins. Mol. Gen. Genet.147:263–269. | google scholar | |
793 | Van Buul, C. P. J. J., and P. H. Van Knippenberg. 1985. Nucleotide sequence of the ksgA gene of Escherichia coli—comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA. Gene 38:65–72. | google scholar | |
794 | Van de Klundert, J. A. M., E. Den Turk, A. H. Borman, P. H. Van der Meide, and L. Bosch. 1977. Isolation and characterization of a mocimycin resistant mutant of Escherichia coli with an altered elongation factor EF-Tu. FEBS Lett. 81:303–307. | google scholar | |
795 | Van de Klundert, J. A. M., P. H. Van der Meide, P. Van de Putte, and L. Bosch. 1978. Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Proc. Natl. Acad. Sci. USA 75:4470–4473. | google scholar | |
796 | Van Dyk, T. K., and R. A. LaRossa. 1986. Sensitivity of a Salmonella typhimurium aspC mutant to sulfometuron methyl, a potent inhibitor of acetolactate synthase II. J. Bacteriol. 165:386–392. | google scholar | |
797 | Van Dyk, T. K., and R. A. LaRossa. 1987. Involvement of ack-pta operon products in α- ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 207:435–440. | google scholar | |
798 | Vasiljevic, B., and L. Topisirovic. 1987. Properties of ribosomes from neamine-dependent (NeaD) mutants of Escherichia coli. Period. Biol. 89:89–93. | google scholar | |
799 | Venables, W. A., and J. R. Guest. 1968. Transduction of nitrate reductase loci of Escherichia coli by phages Pl and λ. Mol. Gen. Genet. 103:127–140. | google scholar | |
800 | Venkateswaran, P. S., and H. C. Wu. 1972. Isolation and characterization of a phosphonomycin- resistant mutant of Escherichia coli K-12. J. Bacteriol. 110:935–944. | google scholar | |
801 | Verhof, C., B. Lugtenberg, R. van Boxtel, P. de Craaff, and H. Verheij. 1979. Genetics and biochemistry of the peptidoglycan-associated proteins b and c of Escherichia coli K12. Mol. Gen. Genet. 169:137–146. | google scholar | |
802 | Vinella, D., R. D’Ari, and P. Bouloc. 1992. Penicillin-binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO J. 11:1493–1501. | google scholar | |
803 | Vinopal, R. T. 1987. Selectable phenotypes. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C. | google scholar | |
804 | Voll, M. J. 1967. Polarity in the histidine operon. III. The isolation of prototrophic polar mutations. J. Mol. Biol. 30:109–124. | google scholar | |
805 | Voll, M. J., and L. Leive. 1970. Release of lipopolysaccharide in Escherichia coli resistant to the permeability increase induced by ethylenediaminetetraacetate. J. Biol. Chem. 245:1108–1114. | google scholar | |
806 | Vonder Haar, R. A., and H. E. Umbarger. 1972. Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine. J. Bacteriol. 112:142– 147. | google scholar | |
807 | Wachi, M., M. Doi, S. Tamaki, W. Park, S. Nakajima-Iijima, and M. Matsuhashi. 1987. Mutant isolation and molecular cloning of mre genes which determine cell shape sensitivity to mecillinam and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169:4935– 4940. | google scholar | |
808 | Wada, C., and T. Yura. 1971. Phenethyl alcohol resistance in Escherichia coli. II. Replication of F (fertility) factor in the resistant strain C600. Genetics 69:275–287. | google scholar | |
809 | Wada, C., and T. Yura. 1974. Phenethyl alcohol resistance in Escherichia coli. III. A temperature-sensitive mutation (dnaP) affecting DNA replication. Genetics 77:199–220. | google scholar | |
810 | Walker, G. C. 1987. The SOS response of Escherichia coli,. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C. | google scholar | |
811 | Wallace, B. J., and J. Pittard. 1969. Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J. Bacteriol. 97:1234–1241. | google scholar | |
812 | Wandersman, C., F. Moreno, and M. Schwartz. 1980. Pleiotropic mutations rendering Escherichia coli K-12 resistant to bacteriophage TP1. J. Bacteriol. 143:1374–1383. | google scholar | |
813 | Wargel, R. J., C. A. Shadur, and F. C. Neuhaus. 1971. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J. Bacteriol. 105:1028–1035. | google scholar | |
814 | Watanabe, H., H. Hashimoto, and S. Mitsuhashi. 1980. Salmonella typhimurium LT2 mutation affecting the deletion of resistance determinants on R plasmids. J. Bacteriol. 142:145–152. | google scholar | |
815 | Watanabe, N.-A., T. Nagasu, K. Katsu, and K. Kitoh. 1987. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother. 31:497–504. | google scholar | |
816 | Watson, C., and K. Paigen. 1971. Isolation and characterization of an Escherichia coli bacteriophage requiring cell wall galactose. J. Virol. 8:669–674. | google scholar | |
817 | Webb, M. 1970. The mechanism of acquired resistance to Co2+ and Ni2+ in gram-positive and gram-negative bacteria. Biochim. Biophys. Acta 222:440–446. | google scholar | |
818 | Weber, J., R. S. F. Lee, E. Grell, and A. E. Senior. 1992. Investigation of the aurovertin binding site of Escherichia coli F-1 ATPase by fluorescence spectroscopy and site-directed mutagenesis. Biochemistry 31:5112–5116. | google scholar | |
819 | Wei, C. R., and S. Kustu. 1981. Glutamine auxotrophs with mutations in a nitrogen regulatory gene, ntrC, that is near glnA. Mol. Gen. Genet. 183:392–399. | google scholar | |
820 | Weiner, J. H., C. E. Furlong, and L. A. Heppel. 1971. A binding protein for L-glutamine and its relation to active transport in E. coli. Arch. Biochem. Biophys. 142:715–717. | google scholar | |
821 | Weiner, J. H., and L. A. Heppel. 1971. A binding protein for glutamine and its relation to active transport in E. coli. J. Biol. Chem. 246:6933–6941. | google scholar | |
822 | White, B. J., S. J. Hochhauser, N. M. Cintron, and B. Weiss. 1976. Genetic mapping of xthA, the structural gene for exonuclease III in Escherichia coli strain K12. J. Bacteriol. 126:1082–1088. | google scholar | |
823 | White, R. J., and P. W. West. 1970. An examination of the inhibitory effects of N- iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants. Biochem. J. 118:81–87. | google scholar | |
824 | Whitfield, H. J., Jr. 1971. Purification and properties of the wild type and a feedback resistant phosphoribosyladenosine triphosphate pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis in Salmonella typhimurium. J. Biol. Chem. 246:899–908. | google scholar | |
825 | Wiater, A., M. Filutowicz, and D. Hulanicka. 1982. A new class of mutants of the cysB regulatory gene for cysteine biosynthesis in Salmonella typhimurium. J. Gen. Microbiol. 128:1785– 1790. | google scholar | |
826 | Wiater, A., and D. Hulanicka. 1978. The regulatory cysK mutant of S. typhimurium. Acta Biochim. Pol. 25:281–287. | google scholar | |
827 | Wiater, A., and D. Hulanicka. 1979. Properties of cysK mutants of Escherichia coli K12. Acta Biochim. Pol. 26:21–28. | google scholar | |
828 | Wiater, A., and T. Klopotowski. 1972. Mutations rendering Salmonella typhimurium resistant to 3-aminotriazole in the presence of histidine. Acta Biochim. Pol. 19:191–199. | google scholar | |
829 | Wijsman, H. J. W., and H. C. Pafort. 1974. Pleiotropic mutations in Escherichia coli conferring tolerance to glycine and sensitivity to penicillin. Mol. Gen. Genet. 128:349–357. | google scholar | |
830 | Wild, D. G. 1988. Reversion from erythromycin dependence in Escherichia coli: strains altered in ribosomal sub-unit association and ribosome assembly. J. Gen. Microbiol. 134:1251–1263. | google scholar | |
831 | Wild, J., and T. Klopotowski. 1975. Insensitivity of D-amino acid dehydrogenase synthesis to catabolite repression in dadR mutants of Salmonella typhimurium. Mol. Gen. Genet. 136:63–73. | google scholar | |
832 | Wild, J., and T. Klopotowski. 1981. D-amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in the enzyme activity and localization of the structural gene. Mol. Gen. Genet. 181:373–378. | google scholar | |
833 | Wilkinson, R. C., P. Gemski, Jr., and B. A. D. Stocker. 1972. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J. Gen. Microbiol. 70:527–554. | google scholar | |
834 | Williams, J. C., C. E. Lee, and J. R. Wild. 1980. Genetic and biochemical characterization of distinct transport systems for uracil, uridine, and cytidine in Salmonella typhimurium. Mol. Gen. Genet. 178:121–130. | google scholar | |
835 | Williams, M. D., J. A. Fuchs, and M. C. Flickinger. 1991. Null mutations in the stringent starvation protein of Escherichia coli disrupt lytic development of bacteriophage P1. Gene 109:21–30. | google scholar | |
836 | Williams, M. V., T. J. Kerr, R. D. Lemmon, and C. J. Tritz. 1980. Azaserine resistance in Escherichia coli: chromosomal location of multiple genes. J. Bacteriol. 143:383–388. | google scholar | |
837 | Williams, M. V., J. J. Rowe, T. J. Kerr, and G. J. Tritz. 1977. Studies on the modes of action of azaserine in Escherichia coli mechanism of resistance to azaserine. Microbios 19:181–190. | google scholar | |
838 | Willsky, G. R., R. L. Bennett, and M. H. Malamy. 1973. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bacteriol. 113:529–539. | google scholar | |
839 | Wittenbach, V. A., D. Rayner, and J. V. Schloss. 1992. Pressure points in the biosynthetic pathway for branched chain amino acids. Biosynthesis and Molecular Regulation of Amino Acids in Plants. American Society of Plant Physiologists, Rockville, Md. | google scholar | |
840 | Wittman, H. G., C. Stoffler, D. Apirion, L. Rosen, K. Tanaka, M. Tamaki, R. Takata, S. Dekio, E. Otaka, and S. Osawa. 1973. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127:175–189. | google scholar | |
841 | Wolfner, M. D. Yep, F. Messenguy, and G. Fink. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96:273–290. | google scholar | |
842 | Wolfson, J. S., D. C. Hooper, G. L. McHugh, M. A. Bozza, and M. N. Swartz. 1990. Mutants of Escherichia coli K12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34:1938–1943. | google scholar | |
843 | Wood, J. M. 1981. Genetics of L-proline utilization in Escherichia coli. J. Bacteriol. 146:895–901. | google scholar | |
844 | Woodward, M. J., and H. P. Charles. 1982. Genes for L-sorbose utilization in Escherichia coli. J. Gen. Microbiol. 128:1969–1980. | google scholar | |
845 | Woodward, M. J., and H. P. Charles. 1983. Polymorphism in Escherichia coli: rtl, atl, and gat regions behave as chromosomal alterations. J. Gen. Microbiol. 129:75–84. | google scholar | |
846 | Wooldridge, K. G., and P. H. Williams. 1991. Sensitivity of Escherichia coli to cloacin DF13 involves the major outer membrane protein OmpF. J. Bacteriol. 173:2420–2424. | google scholar | |
847 | Wu, R., S. Yang, K. Jin, X. Chu, and M. Li. 1987. Cloning and mutagenesis of threonine operon. Shengwu Gongcheng Xuebao 3:177–182. | google scholar | |
848 | Wu, T. T. 1976. Growth of a mutant of Escherichia coli K12 on xylitol by recruiting enzymes for D-xylose and L-1,2-propanediol. Biochim. Biophys. Acta 428:656–666. | google scholar | |
849 | Wu, T. T. 1976. Growth on D-arabitol of a mutant strain of Escherichia coli K12 using a novel dehydrogenase and enzymes related to L-1,2-propanediol and D-xylose metabolism. J. Gen. Microbiol. 94:246–256. | google scholar | |
850 | Xu, S., and T. Qi. 1990. Enhancing effect of chuangxinmycin on synthesis of enzymes in tryptophan synthesis pathway of chuangxinmycin resistant mutant strain of E. coli. Zhongguo Yixue Kexueyuan Xuebao 12:25–30. | google scholar | |
851 | Yadav, N., R. E. McDevitt, S. Benard, and S. C. Falco. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. USA 83:4418–4422. | google scholar | |
852 | Yagil, E., and H. Be’eri. 1977. Arsenate-resistant alkaline phosphatase-constitutive mutants of Escherichia coli. Mol. Gen. Genet. 154:185–189. | google scholar | |
853 | Yamada, T., and J. Davies. 1971. A genetic and biochemical study of streptomycin- and spectinomycin-resistance in Salmonella typhimurium. Mol. Gen. Genet. 110:197–210. | google scholar | |
854 | Yamagata, H., C. Ippolito, M. Inukai, and M. Inouye. 1982. Temperature-sensitive processing of outer membrane lipoprotein in an Escherichia coli mutant. J. Bacteriol. 152:1163–1168. | google scholar | |
855 | Yamagishi, J., H. Yoshida, M. Yamayoshi, and S. Nakamura. 1986. Nalidixic acid resistant mutations of the gyrB gene of Escherichia coli. Mol. Gen. Genet. 204:367–373. | google scholar | |
856 | Yamamoto, T., and Y. Fujiwara. 1990. Uracil DNA glycosylase causes 5-bromodeoxyuridine photosensitization in Escherichia coli K-12. J. Bacteriol. 172:5278–5285. | google scholar | |
857 | Yamasaki, M., R. Aono, and G. Tamura. 1976. FL-1060 binding protein of Escherichia coli is probably under the control of cyclic AMP. Agric. Biol. Chem. 40:1665–1667. | google scholar | |
858 | Yanagisawa, T., J. T. Lee, H. C. Wu, and M. Kawakam. 1994. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli: a proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J. Biol. Chem. 269:24304–24309. | google scholar | |
859 | Yarmolinsky, M. B., H. Wiesmeyer, H. M. Kalckar, and E. Jordan. 1959. Hereditary defects in galactose metabolism in Escherichia coli mutants. II. Galactose-induced sensitivity. Proc. Natl. Acad. Sci. USA 45:1786–1791. | google scholar | |
860 | Yoshida, H., M. Bogaki, M. Nakamura, and S. Nakamura. 1990. Quinolone resistance- determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271–1272. | google scholar | |
861 | Yoshikawa, M., A. Okuyuma, and N. Tanaka. 1975. A third kasugamycin resistance locus, ksgC, affecting ribosomal protein S2 in Escherichia coli K-12. J. Bacteriol. 122:796–797. | google scholar | |
862 | Yudkin, M. D. 1977. Unstable mutations that relieve catabolite repression of tryptophanase synthesis by Escherichia coli. J. Bacteriol. 130:57–61. | google scholar | |
863 | Yura, T., and K. Igarishi. 1968. RNA polymerase mutants of Escherichia coli. I. Mutants resistant to streptovaricin. Proc. Natl. Acad. Sci. USA 61:1313–1319. | google scholar | |
864 | Yura, T., and C. Wada. 1968. Phenethyl alcohol resistance in Escherichia coli. I. Resistance of strain C600 and its relation to azide resistance. Genetics 59:177–190. | google scholar | |
865 | Zak, V. L., and R. A. Kelln. 1978. 5-Fluoroorotate-resistant mutants of Salmonella typhimurium. Can. J. Microbiol. 24:1339–1345. | google scholar | |
866 | Zak, V. L., and R. A. Kelln. 1981. A Salmonella typhimurium mutant dependent upon carbamyl aspartate for resistance to 5-fluorouracil is specifically altered in ubiquinone biosynthesis. J. Bacteriol. 145:1095–1098. | google scholar | |
867 | Zissler, J., E. Signer, and F. Schaefer. 1971. The role of recombination in growth of bacteriophage lambda. I. The gamma gene. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. | google scholar | |
868 | Zwiebel, L. J., M. Inukai, K. Nakamura, and M. Inouye. 1981. Preferential selection of deletion mutations of the outer membrane lipoprotein gene of Escherichia coli by globomycin. J. Bacteriol. 145:654–656. | google scholar | |
869 | Comai, L.. 1985. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use. US Patent US4535060. | google scholar | |
870 | Lin, S. C. L., D. T. Palmer, and H. I. Miller. 1986. Phage resistant E. Coli bacterium and method for making the same. European Patent EP0183469A1. | google scholar | |
871 | Miller, E. S.. 1984. PhD Thesis. Purdue University. | google scholar | |
872 | Epelbaum, S., Z. Barak, R. Larossa, and D. Chipman. 1994. Unpublished data. | google scholar | |
873 | Freitag, C. S.. 1982. The application of streptozotocin resistance and transposon mutagenesis in the selection of pts mutations in Salmonella Typhimurium (PhD Thesis). North Carolina State University. | google scholar |
Contribute to free E. coli (and Salmonella) knowledge!
These data were automatically extracted and parsed from the pdf, using a few bash and python scripts.
Many mistakes may remain, either introduced by our parsing or present in the original book. Moreover finding a pdf for each reference requires manual work in many cases. You are very welcome to contribute!
Start by cloning the git repository from https://github.com/afrenoy/EcoliSelectableGenes. You can then easily:
- Fix a mistake in one of the tables: just edit the corresponding csv file (
table1.csv
,table2.csv
orreferences.csv
), and the webpage will be updated when running./generatewebpage.py
- Add a missing pdf: just add it in the
pdf/
directory, naming itrefnumber.pdf
(eg84a.pdf
or26.pdf
), and a link will automatically be generated when running./generatewebpage.py
- Add a missing link to EcoCyc: add a new line to
ecocyc.csv
linking the name used in our tables with and an EcoCyc ID, and a link will automatically be generated when running./generatewebpage.py
After doing any of these changes, you can just run ./generatewebpage.py
to update the main file index.html
. If you are satisfied with the outcome, send a patch / a pull request.
Other contributions and suggestions of improvement are also very welcome!