Molecular basis of valine resistance in Escherichia coli K-12

(DNA sequence/frameshift mutation/transcriptional polarity/isoleucine and valine biosynthesis)

Robert P. Lawther*, David H. Calhoun ${ }^{\dagger}$, Craig W. Adams ${ }^{\ddagger}$, Craig A. Hauser ${ }^{\ddagger}$, John Gray ${ }^{\dagger}$, and G. Wesley Hatfield ${ }^{\ddagger}$

*Department of Biology, University of South Carolina, Columbia, South Carolina 29208; tDepartment of Microbiology, Mt. Sinai School of Medicine, New York, New York; and \ddagger Department of Microbiology, College of Medicine, University of California, Irvine, California 92717

Communicated by Maxine F. Singer, November 7, 1980

Abstract

The relationship of valine resistance to the expression of the ilvGEDA operon of Escherichia coli K-12 has been determined. DNA sequence and in vivo protein analyses indicate that in wild-type E. coli K-12 there is a frameshift site within the gene (ilvG) for valine resistance. The ilv $G^{+} 2096$ (formerly designated ilv02096) mutation displaces this frameshift site, resulting in the expression of ilvG and the relief of transcriptional polarity on the distal genes of this operon. Thus, the "ilv0" mutation, which concomitantly confers valine resistance and increased expression of the ilvEDA genes, is, in fact, the "reversion" of a polar site within the first structural gene of the ilvGEDA operon.

Nearly a quarter of a century ago Tatum (l) noted that, in the absence of isoleucine, valine inhibits the growth of Escherichia coli K-12. This sensitivity to exogenous valine is due to the feedback inhibition of the acetohydroxy acid synthase (AHAS) isozymes, which catalyze the first step in the biosynthesis of both valine and isoleucine (2). The genomes of wild-type E. coli strains contain genes for three AHAS isozymes: ilvB (AHAS I; ref. 3), ilvG (AHAS II; ref. 4), and ilvHI (AHAS III; ref. 5). Although E. coli K-12 possesses these three genes, it expresses only the AHAS I and AHAS III activities (4). The AHAS I and AHAS III isozymes are both sensitive to feedback inhibition by valine, whereas the AHAS II isozyme (not expressed in E. coli $\mathrm{K}-12$) is resistant to this inhibition. Consequently, exogenous valine inhibits the total AHAS activity in E. coli K-12, resulting in a starvation for the other end product of the common biosynthetic pathway, isoleucine.

Several types of valine-resistant derivatives of E. coli K-12 can be isolated (6). One class of these valine-resistant strains contains a cis-dominant mutation, heretofore designated "ilv0" (7), which has been genetically mapped between mutations in $i l v G$ and $i l v E(8,9)$. This mutation results in the expression of the normally cryptic ilvG gene product AHAS II (hence, the valine-resistant phenotype; ref. 4) and, concomitantly, a 5- to 10 -fold increase in the expression of the ilvEDA genes. Because of the coordinant derepressing effect of these ilv0 mutations, it was long thought that they defined a regulatory region for the ilvEDA genes (7, 10). However, it has been recently shown that $i l v G$ and $i l v E D A$ are, in fact, contiguous genes of a single operon, ilvGEDA, regulated by a promoter-attenuator region, $i l v L$, preceding ilvG (11-14).

In order to understand the nature of the ilvo site in E. coli K-12, we determined the DNA sequence of the ilvG gene of wild-type E. coli K-12 and of a valine-resistant derivative containing a mutation designated ilv02096 (9). We find that there is a frameshift site within the ilvG gene of wild-type E. coli K12. The ilv02096 mutation (a two-base insertion event) displaces this site, permitting the expression of the ilvG gene product,

[^0]

Fig. 1. Schematic representation of ilvLGE' region of the iluGEDA operon. The arrows indicate the translation stop sites for the ilvG ${ }^{-}$and ilv G^{+}gene products according to DNA sequences shown in Figs. 2 and 3. bp, Base pairs.

AHAS II. The concomitant increase in the expression of the distal portion of the ilvGEDA operon is therefore presumed to be due to relief of transcriptional polarity.

MATERIALS AND METHODS

Restriction enzymes were obtained from New England BioLabs, were prepared by standard methods, or were a gift of Charles Yanofsky. Plasmids were prepared as described (11). Construction and characterization of plasmid pRL5 have been described (11). pRL5 is a plasmid with a 4.8 -kilobase HindIII fragment from the ilv region of wild-type E. coli K-12 (ilvLG ${ }^{-} E^{\prime}$) cloned into the single HindIII site of pBR322. The ilv02096 and ilvE2105 mutations were mobilized from strain CU693 (ilv02096 ilvE2105; ref. 9) onto λ dilv58 (8) by homologous recombination to give λ dilv581. Plasmids pAH4 and pAH29 were constructed by insertion of the 4.8 -kilobase HindIII restriction fragment from λ dilv581, which includes the beginning of the ilvGEDA operon (ilvLGE'), into the HindIII restriction site of pBR 322 . This HindIII restriction fragment in pAH4 is in the opposite orientation of the analogous HindIII restriction fragment in pRL5 and pAH29. DNA restriction fragments were prepared and DNA sequence was analyzed as described by Maxam and Gilbert (15). The DNA sequence of both strands of wild-type E. coli K-12 DNA was determined from restriction fragments of pRL5 (ilvG ${ }^{-}$) and compared to DNA sequences from pAH4 (ilvG ${ }^{+}$2096).

RESULTS

In order to understand the absence of the AHAS II isozyme in wild-type E. coli K-12 and its presence in ilv0-containing strains,

Abbreviations: AHAS I, II, and III, isozymes of acetohydroxy acid synthase; bp, base pair(s).
 tTTTTTATA GAACATGATA AATGTTTTGG ATACCATTGA GAAATCCGTA AGGAAGCTTG TTCTACGTTC TTTTCTGTTT TAC,TGT,CGG,GAA Leu-Arg-Val-I le-Ser-Leu-Val-Val-Ile-Ser-Val-Val-Val-Ile-Ile-Ile-Pro-Pro-Cys-Gly-Ala-Ala-Leu-Gly-Ary-Gly-Lys-Ala-Stop TA, CGA, GTG, ATT, AGC, CTG, GTC, GTG, ATT, AGC, GTG, GTG, GTG, ATT, ATT, ATC, CCA, CCG, TGC, GGG, GCT, GCA, CTT, GGA, CGA, GGA, AAG, GCT, TAG AG +134 ATCAAGCCT TAACGAACTA AGACCCCCGC ACCGAAAGGT CCGGGGGTTT TTTTTGACCT TAAAAACATA ACCGAGGAGC AGACAATGAA TAACAGCACA AAATTCTGTT
 (GCAAGAT TCAGGACGGG GAACTAACTA TGAATGGCGC ACAGTGGGTG GTACATGCGT TGCGGGCACA GGGTGTGAAC ACCGTTTTCG GTTATCCGGG TGGCGCAATT agagttcta agtcctgccc cttgattgat actiaccgcg tgTcacccac catgtacgca acgcccgtgt cccacactig tggcananc cantacgccc accgcgttan Met-Pro-Val-Tyr-Asp-Ala-Leu-Tyr-Asp-G1y-G1y-Val-G1u-His-Leu-Leu-Cys-Arg-H1s-Glu-Gln-G1y-Ala-Ala-Met-Ala-Ala-Ile-Gly-Tyr TAC, GGC, CAA, ATG, CTA, CGT, AAC, ATA, CTG, CCG, CCG, CAC, CTC, GTG, AAC, GAT, ACG, GCT, GTA, CTC, GTC, CCA, CGC, CGT, TAC, CGC, CGA, TAG, CCA, ATA Ala-Arg-Ala-Thr-Gly-Lys-Thr-Gly-Val-Cys-I 1e-Ala-Thr-Ser-Gly-Pro-G1y-Ala-Thr-Asn-Leu-Ile-Thr-Gly-Leu-Ala-Asp-Ala-Leu-Leu GCT, CGT, GCT, ACC , GGC, AAA, ACT, GGC, GTA, TGT, ATC, GCC, ACG, TCT, GGT, CCG, GGC, GCA, ACC , AAC, CTG, ATA , ACC , GGG, CTT, GCG, GAC, GCA, CTG, TTA CGA, GCA, CGA, TGC, CCG, TTT, TGA, CCG, CAT, ACA, TAG, CGG, TGC, AGA, CCA, GGC, CCG, CGT, TGG, TTG, GAC, TAT, TGG, CCC,GAA, CGC, CTG, CGT, GAC, AAT
Asp-Ser-Ile-Pro-Val-Val-Ala-Ile-Thr-Gly-Gln-Val-Ser-Ala-Pro-Phe-Ile-Gly-Thr-Glu-Ala-Phe-Gln-Glu-Val-Asp-Val-Leu-Gly-Leu GAT, TCC, ATC, CCT, GTT, GTT, GCC, ATC, ACC, GGT, CAA, GTG, TCC, GCA, CCG, TTT, ATC, GGC, ACT, GAC, GCA, TTT, CAG, GAA, GTG, GAT, GTC, CTG, GGA, TTG CTA, AGG, TAG, GGA, CAA, CAA, CGG, TAG, TGG, CCA, GTT, CAC, AGG, CGT, GGC, AAA, TAC, CCG, TGA, CTG, CGT, AAA, GTC, CTT, CAC, CTA, CAG, GAC, CCT, AAC Ser-Leu-Ala-Cys-Thr-Lys-H1s-Ser-Phe-Leu-Val-Gln-Ser-Leu-Glu-Glu-Leu-Pro-Arg-Ile-Met-Ala-Glu-Ala-Phe-Asp-Val-Ala-Cys-Ser AGC, AAT, CGG, ACA, TGG, TTC, GTA, TCG, AAA, GAC, CAC, GTC, ACC, GAC, CTT, CTC, AAC, GGC, GCG, TAG, TAC, CGA, CTT, CGT, AAG, CTG, CAA, CGG, ACG, AGT Gly-Arg-Pro-Gly-Pro-Val-Leu-Val-Asp-I le-Pro-Lys-Asp-Ile-G1n-Leu-Ala-Ser-G1y-Asp-Leu-G1u-Pro-Trp-Phe-Thr-Thr-Val-Glu-Asn GGT, CGT, CCT, GGT, CCG, GTT, CTG, GTC, GAT, ATC, CCA, AAA, GAT, ATC, CAG, TTA, GCC, ACC, GGT, GAC, CTG, GAA, CCG, TGG, TTC, ACC, ACC, GTT, GAA, AAC Glu-Val-Thr-Phe-Pro-His-Ala-Glu-Val-Glu-G1n-Ala-Arg-G1n-Met-Leu-Ala-Lys-Ala-G1n-Lys-Pro-Met-Leu-Tyr-Val-Gly-Gly-Gly-Val GAA, GTG, ACT, TTC, CCA, CAT, GCC, GAA, GTT, GAG, CAA, GCG, CGC, CAG, ATG, CTG, GCA, AAA, GCG, CAA, AAA, CCG, ATG, CTG, TAC, GTT, GGC, GGT, GGC, GTG CTT, CAC, TGA, AAG, GGT, GTA, CGG,CTT, CAA, CTC, GTT, CGC, GCG, GTC, TAC, GAC, CGT, TTT, CGC, GTT, TTT, GGC, TAC, GAC, ATG, CAA, CCG, CCA, CCG, CAC Gly-Met-Ala-Gln-Ala-Val-Pro-Ala-Leu-Arg-Glu-Phe-Leu-Ala-Ala-Thr-Lys-Met-Pro-Ala-Thr-Cys-Thr-Leu-Lys-Gly-Leu-Gly-Ala-Val GGT, ATG, GCG, CAG, GCA, GTT, CCG, GCT, TTG, CGT, GAA, TTT, Glu-Ala-Asp-Tyr-Pro-Tyr-Tyr-Leu-Gly-Met-Leu-Gly-Met-His-Gly-Thr-Lys-Ala-Ala-Asn-Phe-Ala-Val-Gln-Glu-Cys-Asp-Leu-Leu-Ile GAA, GCA, GAT, TAT, CCG, TAC, TAT, CTG, GGC, ATG, CTG, GGG, ATG, CAC, GGC, ACC, AAA, GCG, GCA, AAC, TTC, GCG, GTG, CAG, GAG, TGT, GAC, CTG, CTG, ATC Ala-Val-Gly-Ala-Arg-Phe-Asp-Asp-Arg-Val-Thr-Gly-Lys-Leu-Asn-Thr-Phe-Ala-Pro-His-Ala-Ser-Val-Ile-His-Met-Asp-I le-Asp-Pro GCC, GTG, GGC, GCA, CGT, TTT, GAT, GAC, CGG, GTG, ACC, GCC, AAA, CTG, AAC, ACC, TTC, GCG, CCA, CAC, GCC, AGT, GTT, ATC, CAT, ATG, GAT, ATC, GAC, CCG CGG, CAC, CCG, CGT, GCA, AAA, CTA, CTG, GCC, CAC, TGG, CCG, TTT, GAC, TTG, TGG, AAG, CGC, GGT, GTG, CGG, TCA, CAA, TAG, GTA, TAC, CTA, TAG, CTG, GGC Ala-Glu-Met-Asn-Lys-Leu-Arg-Gln-Ala-His-Val-Ala-Leu-Glu-G1y-Asp. Leu-Asn-Ala-Leu-Leu-Pro-Ala-Leu-G1n-G1n-Pro-Leu-Asn-G1n GCA, GAA, ATG, AAC, AAG, CTG, CGT, CAG, GCA, CAT, GTG, GCA, TTA, CAA, GGT, GAT, TTA, AAT, GCT, CTG, TTA, CCA, GCA, TTA, CAG, CAG, CCG, TTA, AAT, CAA Tyr-Asp-Trp-Gln-Gln-His-Cys-Ala-Glu-Leu-Arg-Asp-Glu-His-Ser-Trp-Arg-Tyr-Asp-His-Pro-Gly-Asp-Ala-Ile-Tyr-Ala-Pro-Leu-Leu +1252 TAT GAC, TGG, CAG, CAA $\mathrm{CAC}, \mathrm{TGC}, \mathrm{GCG}, \mathrm{CAG}, \mathrm{CTG}, \mathrm{CGT}, \mathrm{GAT}, \mathrm{GAA}, \mathrm{CAT}, \mathrm{TCC}, \mathrm{TGG}, \mathrm{CGT}, \mathrm{TAC}, \mathrm{GAC}, \mathrm{CAT}, \mathrm{CCC}, \mathrm{GGT}, \mathrm{GAC}, \mathrm{GCT}, \mathrm{ATC}, \mathrm{TAC}, \mathrm{GCG}, \mathrm{CCG}, \mathrm{TTG}, \mathrm{TTC}$ ATA CTG, ACC, GTC, GTT, GTG, ACG, CGC,GTC,GAC, GCA, CTA, CTT, GTA, AGG, ACC, GCA, ATG, CTG, GTA, GGG, CCA, CTG, CGA, TAG, ATG, CGC, GGC, AAC, AAC Leu-Lys-G1n-Leu-Ser-Asp-Arg-Lys-Pro-Ala-Asp-Cys-Val-Val-Thr-Thr-Asp-Val-Gly-Gln-His-G1n-Met-Trp-Ala-Ala-Gln-His-Ile-Ala AAT, AAA, CAA, CTG, TCG, GAT, CG1, AM, CT, GCG, GTA, ACC CAC, CAC, ACG, TCT, GA, CA, CCC, CAG, CTC GTC TAC ACC, GCA, GCG, CAG, CAC, ATC, GCC His-Thr-Arg-Pro-Glu-Asn-Phe-I le-Thr-Ser-Ser-Gly-Leu-Gly-Thr-Met-Gly-Phe-Gly-Leu-Pro-Ala-Ala-Val-Gly-Ala-Gln-Val-Ala-Arg CAC, ACT, CGC, CCG, GAA, AAT, TTC, ATC, ACC, TCC, AGC, GGT, TTA, GGT, ACC, ATG, GGT, TTT, GGT, TTA, CCG, GCG, GCG, GTT, GGC, GCA, CAA, GTC, GCG, CGA GTG, TGA, GCG, GGC, CTT, TTA, AAG, TAG, TGG, AGG, TCG, CCA, AAT, CCA, TGG, TAC, CCA, AAA, CCA, AAT, GGC, CGC, CGC, CAA, CCG, CGT, GTT, CAG, CGC, GCT Pro-Asn-Asp-Thr-Val-Val-Cys-Ile-Ser-Gly-Asp-Gly-Ser-Phe-Met-Met-Asn-Val-G1n-Glu-Leu-Gly-Thr-Val-Lys-Arg-Lys-Gln-Leu-Pro CCG, AAC, GAT, ACC, GTT, GTC, TGT, ATC, TCC, GGT, GAC, GGC, TCT, TTC, ATG, ATG, AAT, GTG, CAA, GAG, CTG, GGC, ACC, GTA, AAA, CGC, AAG, CAG, TTA, CCG
Leu-Lys-Ile-Val-Leu-Leu-Asp-Asn-G1n-Arg-Leu-G1y-Met-Val-Arg-G1n-Trp-G1n-G1n-Leu-Phe-Phe-Gln-G1u-Arg-Tyr-Ser-Glu-Thr-Thr TTG, AAA, ATC , GTC, TTA, CTC, GAT, AAC, CAA, CGG, TTA, GGG, ATG, GTT, CGA, CAA, TGG, CAG, CAA, CTG, TTT, TTT, CAG, GAA, CGA, TAC, AGC, GAA, ACC , ACC AAC, TTT, TAG, CAG, AAT, GAG, CTA, TTG, GTT, GCC, AAT, CCC, TAC, CAA, GCT, GTT, ACC, GTC, GTT, GAC, AAA, AAA, GTC, CTT, GCT, ATG, TCG, CTT, TGG, TGG Leu-Thr-Asp-Asn-Pro-Asp-Phe-Leu-Met-Leu-Ala-Ser-Ala-Phe-Gly-Ile-His-Gly-G1n-His-Ile-Thr-Arg-Lys-Asp-G1n-Val-G1u-Ala-Ala CTT, ACT, GAT, AAC, CCC, GAT, TTC, CTC, ATG, TTA, GCC, AGC, GCC, TTC, GGC, ATC, CAT, GCC, CAA, CAC, ATC , ACC , CGG , AAA, GAC, CAG, GTT, GAA, GCG, GCA GAA, TGA, CTA, TTG, GGG, CTA, AAG, GAG, TAC, AAT, CGG, TCG, CGG, AAG, CCG, TAG, GTA, CCG, GTT, GTG, TAG, TGG, GCC, TTT, CTG, GTC, CAA, CTT, CGC, CGT Leu-Asp-Thr-Met-Leu-Asn-Ser-Asp-G1y-Pro-Tyr-Leu-Leu-His-Val-Ser-Ile-Asp-Glu-Leu-G1u-Asn-Val-Trp-Pro-Leu-Val-Pro-Pro-Gly CTC, GAC, ACC, ATG, CTG, AAC, ACT, GAT, GGG, CCA, TAC, CTG, CTT, CAT, GTC, TCA, ATC, GAC, GAA, CTT, GAG, AAC, GTC, TGG, CCG, CTG, GTG, CCG, CCT, GGC GAG, CTG, TGG, TAC, GAC, TTG, TCA, CTA, CCC, GGT, ATG, GAC, GAA, GTA, CAG, AGT, TAG, CTG, CTT, GAA, CTC, TTG, CAG, ACC, GGC, GAC, CAC, GGC, GGA, CCG
Ala-Ser-Asn-Ser-Glu-Met-Leu-Glu-Lys-Leu-Ser-Stop GCC, AGT, AAT, TCA, GAA, ATG, TTG, GAG, AAA, TTA, TCA, TGA CGG, TCA, TTA, AGT, CTT, TAC, AAC, CTC, TTT, AAT, AGT, ACT IGC AACATCAGGT CAATGTATCG GCTCGCTTCA ATCCAGAAAC CTTAGAACGT GTTTTACGC acG tTGTAGTCCA GTTACATAGC CGAGCGAAGT TAGGTCTTTG GAATCTTGCA CAAAATGCG +1980 GTGGTGCGTC ATCGTGGTTT CCACGTCTGC TCAATGAATA TGGCCGCCGC CAGCGATGCA CAAAATATAA ATATCGAATT GACCGTTGCC AGCCCACGGT CGGTCGACT

 Met-Thr-Thr-Lys-Lys-Ala-Asp-Tyr-Ile-Trp-Phe-Asn-Gly-Glu-Met-Val-Arg-Trp-Glu-Asp-Ala-Lys-Val-His-Val-Met-Ser-His-Ala-Leu ATG, ACC, ACG, AAG, AAA, GCT, GAT, TAC, ATT, TGG, TTC, AAT, GGG, GAG, ATG, GTT, CGC, TGG, GAA, GAC, GCG, AAG, GTG, CAT, GTG, ATG, TCG, CAC, GCG, CTG
His-Tyr-Gly-Thr
CAC, TAT, GGC, ACT
GTG, ATA, CCG, TGA
Fig. 2. Nucleotide sequence of the ilvLGE' portion of the ilvGEDA operon. The sequence was determined from sequence analysis of both strands of wild-type E. coli K-12 DNA from pRL5 ($i l v G^{-}$), which is as shown except that the wild-type sequence is missing two nucleotide pairs (either ${ }_{\mathrm{TA}}^{\mathrm{AT}} \mathrm{or}_{\mathrm{AT}}^{\mathrm{TA}}$) in the region from $\mathrm{bp}+1251$ to +1254 . The regions of $i l v G^{+}$(ilv02096) DNA sequenced from pAH4 were from bp +1070 to +1355 and +1455 to +2214 . These sequences are identical to those shown. $\mathrm{bp}+1$ denotes the point of transcription initiation (12); bp +33 to +128 encodes the leader polypeptide (12); bp +352 to +1914 is the proposed coding region for the $i l v G$ gene; $b p+2197$ is the beginning of the ilvE gene. The box around $\mathrm{bp}+1251$ to +1254 denotes the site of the ilv02096 mutation. $\mathrm{bp}+1254$ to +1256 denote the stop codon for the truncated ilv G polypeptide of wild-type E.coli $\mathrm{K}-12$. The base pairs underlined between $\mathrm{bp}+2063$ and +2095 represent the proposed internal promoter based on consensus promoter sequences (16).
the DNA sequence of the 2 -kilobase $i l v G$ region between ilvL and the beginning of the ilvE gene was determined (Fig. 1).

The DNA sequence of the ilvG ${ }^{+}$(ilv02096) gene presented in Fig. 2 differs from the wild-type E. coli K-12 sequence by the

Fig. 3. Autoradiograph of 8% polyacrylamide sequencing gel of Maxam and Gilbert of the ilvG gene in the region of the ilv02096 mutation in wild-type E. coli K-12 (Left) and the ilv02096 mutant (Right). The sequence is for the lower strand shown in Fig. 2. Two nucleotides absent in the wild-type sequence are indicated (bp 1252 and 1253). The single $P v u$ II endonuclease restriction site in $i l v G$ (Fig. 1) is identified.
presence of two additional nucleotides, either A-T or T-A, in the region from base pairs (bp) 1251 to 1254 . That is, in mutant ilv02096 ($i l v G^{+}$), the DNA sequence from bp 1250 to 1255 is A-A-T-A-T-G whereas the wild-type (ilvG ${ }^{-}$) sequence is A-A-TG. An autoradiograph comparing the DNA sequence of the segment of the ilvG gene that contains the ilv02096 mutation (from pAH4) with the DNA sequence of the same segment of this gene from wild-type E. coli K-12 (from pRL5) is shown in Fig. 3. This DNA sequence is the lower strand presented in Fig. 2. The single Pvu II site between ilvL and ilvE is indicated (Figs. 1 and 3). From these data it appears that, in wild-type E. coli K-12, translation of $i l v G$ is terminated by the UGA codon (bp 1254-1256, Fig. 2), which is in the translation frame of the proximal portion of ilvG. This would result in the formation of a $300-$ amino-acid protein that terminates prior to the Pvu II site (Fig. 1, ilvG G^{-}product). A mutation to $i l v G^{+}$(presumably either a single-base deletion or a two-base insertion as in ilv02096) must change the reading frame and allow the formation of the 521-amino-acid AHAS II protein (Fig. 1, ilvG ${ }^{+}$product).

This expectation is confirmed by analysis of the protein products of plasmids pBR322, pRL5, and pAH29 in the "maxi-cell" strain described by Sancar et al. (17). This E. coli strain contains recA and uvrA mutations, which, upon irradiation, result in extensive degradation of chromosomal DNA. Plasmids that have not received a direct UV hit continue to replicate, resulting in an enrichment of the plasmid and, hence, of plasmid products. Thus, addition of a radiolabeled amino acid after plasmid enrichment permits specific labeling of the plasmid-encoded proteins. Lanes A, B, and C in Fig. 4 present, respectively, the protein products of $\mathrm{pBR} 322, \mathrm{pRL5}$, and pAH29. As can be seen, there is a protein of $M_{\mathrm{r}} \approx 35,000$ in lane B (ilvG${ }^{-}$) that is not present in lane A or C. Likewise, there is a protein of $M_{r} \approx$ 70,000 present in lane $\mathrm{C}\left(i l v G^{+}\right.$, ilv02096) that is not present in lane A or B. The protein of $M_{\mathrm{r}} 11,000$ is the truncated $i l v E^{\prime}$ gene product formed by the fusion of the first 243 bp of this gene with the 15 bp following the HindIII site of pBR322 (18). These data are consistent with our analysis of the DNA sequence presented in Figs. 2 and 3.

Fig. 4. Autoradiograph of in vivo $\left[{ }^{35} \mathrm{~S}\right]$ methionine-labeled proteinsencoded by plasmids pBR322 (lane A), pRL5 containing the ilv G^{-} gene from wild-type E. coli K-12 (lane B), and pAH 29 containing the ilv G^{+}gene from the ilu02096 mutant (lane C). Samples were prepared and electrophoresis was performed on a $\mathrm{NaDodSO}_{4} /$ polyacrylamide (12.5\%) gel by the methods of Sancar et al. (17).

DISCUSSION

Our knowledge of the organization and regulation of the genes required for the biosynthesis of isoleucine, leucine, and valine has grown dramatically. The ilvo locus was initially believed to be a regulatory site between ilvA and ilvC that affected the expression of the ilvADE genes $(7,10)$. Subsequently, it became apparent that the valine-resistant phenotype of ilv0 is due to the expression of the valine-resistant AHAS II, the product of $i l v G(4)$, and that the ilv0 locus is located prior to ilvE (i.e., ilvOEDA; ref. 19). Recent work indicated that ilv0 is located between ilvG and ilvE (i.e., ilvG0EDA; refs. 8 and 9). It is now clear from the sequences presented in Figs. 2 and 3 that the site of $i l v 0$ is actually within ilvG and that the ilv0 mutation eliminates a site of polarity within the structural gene for AHAS II. This change results in both the production of AHAS II and an increase in the expression of the distal portions of the ilvGEDA operon. Consequently, the ilv0 designation should no longer be used because it is not a regulatory locus and because wildtype E. coli K-12 is ilvG ${ }^{-}$and valine-resistant derivatives that "restore" AHAS II activity are ilvG ${ }^{+}$.

It seems most likely that the start of the ilvG gene is the AUG codon at bp 352-354 and not the AUG codon at bp 271-273 as previously suggested (12). Our revised estimate is based upon evidence from the complete DNA sequence of this gene (Fig. 2) and the size of the protein products of the plasmids containing either ilvG ${ }^{-}$or ilvG ${ }^{+}$genes (Figs. 1 and 4). Examination of the DNA sequence prior to the AUG codon at bp 271-273 indicates the absence of a region complementary to the 3^{\prime} terminus of 16 S ribosomal RNA, which is believed to be necessary for initiation of translation (20). Both the AUG codon at bp 352-354 and the AUG codon at bp 424-426 are preceded by the sequence G-G-T-G at bp 340-343 and 415-418, respectively. These sequences are a reasonable match for the 3^{\prime} ter-
minus of $16 S$ ribosomal RNA (20). The former of these two AUG codons has been chosen because of its relative proximity to the attenuator and the sizes of the protein products of the plasmids. Absolute assignment of the start of this gene must, of course, await determination of the amino-terminal sequence of the AHAS II protein.

Published results on the selection of valine-sensitive (ilv G^{-}) derivatives of $i l v 0$ strains (9) and the restriction endonuclease mapping of the ilv0 site (2) are not entirely consistent with the results reported here. Two classes of ilvG mutations isolated either by chemical mutagenesis or by insertion of bacteriophage Mu have been reported (9). These ilvG ${ }^{-}$strains differ in the level of expression of distal portions of the operon. In the chemically mutagenized strains, this may reflect the difference between ilv G^{-}missense mutations (ilvG ${ }^{-}$, with high expression of $i l v E D A$) and the polarity of nonsense mutations (ilvG ${ }^{-}$, with low expression of ilvEDA). Because insertion of bacteriophage Mu is presumably polar (21), there should be no expression of $i l v E D A$. However, in the distal portion of ilvG there is an RNA polymerase binding site (bp 2063-2095; ref. 11) which may serve as a promoter, allowing a low expression of ilvEDA. This is similar to the low-level internal promoter proposed in Salmonella typhimurium (22). This second promoter may explain why $i l v G^{-}:: M u$ strains could exhibit a low expression of the ilvEDA genes but does not explain ilvG $G^{-}:$Mu strains with high expression (9). Subrahmanyam et al. (23) have concluded from restriction endonuclease mapping that the ilv0 site is between the Kpn I and Sal I restriction sites (Fig. 1). This conclusion is based upon exchanging different portions of wild-type and ilv0containing plasmids for one another. A careful resequencing of the DNA between the Kpn I and Sal I restriction sites of pAH4 ($i l v G^{+}$, ilv02096) indicates that the DNA from this region is identical to that of wild type (unpublished observations).

The existence of a site of polarity within the ilvG gene of wild-type E. coli K-12 can explain the large increase in expression of the distal ilvEDA genes in ilvG ${ }^{+}$strains or in strains containing an altered rho factor (24-26). Comparison of the intensity of the "ilvE product" band in lanes B and C of Fig. 4 demonstrates the increased expression of the ilvE gene when it is distal to an ilv G^{+}gene. The polarity-relieving effect of altered rho factor has been interpreted as indicating an attenuator prior to these genes (24-27). Indeed, the ilvGEDA operon does have an attenuator prior to ilvG, which has been characterized by DNA sequence and in vitro transcription analyses (12, 13). However, because the characteristic phenotype of rho mutations is the suppression of polarity (28), it seems most likely that the strong effect of an altered rho factor on the expression of the ilvEDA genes in wild-type E. coli K-12 is due to polarity suppression within the $i l v G$ gene. An interesting aspect of these results is that the mutation of ilvG ${ }^{-}$to $i l v G^{+} 2096$ is a two-base pair insertion. The mechanism of this insertion event and the genetic flexibility of this region are unknown.

Note Added in Proof. Henceforth, in compliance with the rules of genetic nomenclature (29), the ilv promoter-leader-attenuator region (ilvL
in this publication) shall be designated $i l v G_{\text {p.e.a }}$. The ilv G gene in wildtype E. coli K 12 shall be designated $i l v G^{+}\left(\mathrm{IlvG}^{-}\right)$and the mutations previously designated ilv0 (e.g., ilv0 2096) shall be designated ilvG ${ }^{-}$2096(IlvG^{+}).

We thank Mike Stallcup and Bert Ely for critically reading this manuscript. We are grateful to Marie Pollack and Twyla Miner for their expert technical assistance. This work was supported by grants from the National Institutes of Health [GM-24330 (to G.W.H.), GM-23182 (to D.H.C.), GM-28021 (to R.P.L.), and 5-507-RR07160 (to R.P.L.)].

1. Tatum, E. L. (1946) Cold Spring Harbor Symp. Quant. Biol. 11, 278-284.
2. DeFelice, M., Levinthal, M., Iaccarino, M. \& Guardiola, J. (1979) Microbiol Rev. 43, 42-58.
3. Newman, T. C. \& Levinthal, M. (1980) Genetics 96, 59-77.
4. Favre, R., Wiater, A., Puppo, S., Iaccarino, M., Noelle, R. \& Freundlich, M. (1976) Mol. Gen. Genet. 143, 243-252.
5. DeFelice, M., Guardiola, J., Esposito, B. \& Iaccarino, M. (1974) J. Bacteriol 120, 1068-1077.
6. Glover, S. W. (1962) Genet. Res. 3, 448-460.
7. Ramakrishnan, T. \& Adelberg, E. A. (1965) J. Bacteriol. 89, 654-660.
8. Baez, M., Patin, D. W. \& Calhoun, D. H. (1979) Mol. Gen. Genet. 169, 289-297.
9. Smith, J. M., Smith, F. J. \& Umbarger, H. E. (1979) Mol Gen. Genet. 169, 299-314.
10. Ramakrishnan, T. \& Adelberg, E. H. (1965) J. Bacteriol. 89, 661-664.
11. Lawther, R. P., Nichols, B., Zurawski, G. \& Hatfield, G. W. (1979) Nucleic Acids Res. 7, 2289-2301.
12. Lawther, R. P. \& Hatfield, G. W. (1980) Proc. Natl Acad. Sci. USA 77, 1862-1866.
13. Nargang, F. E., Subrahmanyam, C. S. \& Umbarger, H. E. (1980) Proc. Nath Acad. Sci. USA 77, 1823-1827.
14. Gayda, D. J., Leathers, T. D., Noti, J. D., Smith, F. J., Smith, J. M., Subrahmanyam, C. S. \& Umbarger, H. E. (1980) J. Bacteriol 142, 556-567.
15. Maxam, A. M. \& Gilbert, W. (1980) Methods Enzymol. 65, 499-560.
16. Rosenberg, M. \& Court, D. (1979) Annu. Rev. Genet. 13, 319-353.
17. Sancar, A., Hack, A. M. \& Rupp, W. D. (1979) J. Bacteriol. 137, 692-693.
18. Sutcliffe, J. G. (1978) Cold Spring Harbor Symp. Quant. Biol. 43, 77-90.
19. Cohen, B. N. \& Jones, E. W. (1976) Genetics 83, 201-225.
20. Steitz, J. A. (1979) in Biological Regulation and Development, ed. Goldberger, R. F. (Plenum, New York), Vol. 1, pp. 349-399.
21. Howe, M. M. \& Bade, E. G. (1975) Science 190, 624-632.
22. Shaw, K. J., Berg, C. M. \& Sobol, T. J. (1980) J. Bacteriol. 141, 1258-1263.
23. Subrahmanyam, C. S., McCorkle, G. M. \& Umbarger, H. E. (1980) J. Bacteriol. 142, 547-555.
24. Wasmuth, J. J. \& Umbarger, H. E. (1973) J. Bacteriol. 116, 548-561.
25. Smith, J. M., Smolin, D. E. \& Umbarger, H. E. (1976) Mol. Gen. Genet. 148, 111-124.
26. Lawther, R. P. \& Hatfield, G. W. (1978) Mol Gen. Genet. 167, 227-234.
27. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. L., Squires, C. \& Yanofsky, C. (1975) Science 189, 22-26.
28. Richardson, J. P., Grimley, C. \& Lowery, C. (1975) Proc. Natl. Acad. Sci. USA 72, 1725-1729.
29. Bachmann, B. \& Brooks Low, K. (1980) Microbiol. Rev. 44, 1-56.

[^0]: The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U . S. C. $\S 1734$ solely to indicate this fact.

