A New Locus of *Escherichia coli* That Determines Sensitivity to Bacteriophage $\phi X174$

REIKICHI MUNEKIYO,* TERUHISA TSUZUKI, AND MUTSUO SEKIGUCHI

Department of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan

Received for publication 30 March 1979

A new gene designated phxB, necessary for adsorption of $\phi X174$ to the cell surface of *Escherichia coli*, is located between *gal* and *aroG* on the *E. coli* chromosome.

Bacteriophage $\phi X174$ infects *Escherichia coli* strain C but not strain K-12. The difference is due to the absence of *phx*, a gene required for $\phi X174$ adsorption, in *E. coli* K-12. The *phx* gene is located near *xyl* at 79 min of the map of *E. coli* chromosome (1, 9). In this paper we describe another locus which is also required for adsorption of $\phi X174$. The gene(s) is closely linked to *gal* (at 17 min) and is present in both strains C and K-12. We propose that the new locus be designated *phxB* while the former (the original *phx*) is named *phxA*.

When E. coli C (Gal⁺, ϕ X174 sensitive) lysogenic for $\lambda c I857 x i s$ was plated on eosin-methvlene blue galactose agar plates and incubated at 42°C, white-colored Gal⁻ colonies were produced at high frequencies; with 11 independent lysogens, 11 to 19% of survivors were Gal⁻. Since the λ strain used is defective in excision capacity, it is likely that portions of the bacterial genome adjacent to att λ are excised together with λ prophage. This notion was supported by the finding that among Gal⁺ and Gal⁻ survivors there were many Bio⁻ and/or UR-sensitive mutants (Table 1). It has been shown that bio and uvrB genes are present at a region close to $att\lambda$, on the opposite side of the region that gal occupies (1).

It was unexpected, however, that most of Gal⁻ mutants were resistant to $\phi X174$ though they remained sensitive to other phages (λ , P1, and T-phages). As shown in Table 1, 82% of Gal⁻ survivors were $\phi X174$ resistant. A few partially resistant mutants, on which $\phi X174$ produced turbid plaques, were also found. In contrast, no $\phi X174$ -resistant mutant was found among Gal⁺ survivors. It was shown, moreover, that all the $\phi X174$ -resistant Gal⁻ mutants were Aro⁺ and TolPAB⁺. These results can be explained by the idea that a locus that determines sensitivity to $\phi X174$ is present between gal and aroG (Fig. 1).

The above notion was supported by the following experiments. (i) When $\phi X174$ -resistant Gal⁻ mutants were infected with P1 phages grown on *E. coli* K-12, all the Gal⁺ transductants (e.g., strain RY544) were found to be sensitive to $\phi X174$. (ii) Introduction of F₈gal, an F prime plasmid carrying gal and the adjacent region, into $\phi X174$ -resistant Gal⁻ strains produced $\phi X174$ -resistive Gal⁺ cells. (iii) When $\lambda gal8$ *bio*69, which carries the whole gal operon but not aroG (see Fig. 1), was applied to $\phi X174$ resistant Gal⁻ recipients, all of the Gal⁺ transductants exhibited the $\phi X174$ -sensitive character. It seems, therefore, that the gene order in this region is aroG-phxB-gal-att λ .

Figure 2 shows kinetics of adsorption of $\phi X174$ to various strains. No adsorption of phage occurred with strain RY528 and strain C600, whereas a rapid adsorption took place with strain C. Thus, the normal function of phxBgene is required for adsorption of phage to the cell surface. The finding that the replicative form (double-stranded) of $\phi X174$ can produce phages in CaCl₂-treated cells of RY528 as well as of strain C also supports this view. It has been shown that attachment of $\phi X174$ to cell surface takes place in the lipopolysaccharide of the cell outer membrane (5, 6). Mutants in lipopolysaccharide biosynthesis alter colonial morphology and often sensitivity to phages (8, 10). However, phxB strains in this report exhibited normal

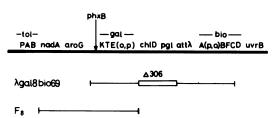


FIG. 1. A genetic map near att λ . The data were taken from Bachmann et al. (1). The regions covered by λ gal8 bio69 (7) and F_{\star} gal (11) are also presented. Δ denotes deletion.

Selected markers	Unselected markers			No. of
	φX174	Bio	UV	isolates
<i>E. coli</i> C wild type	S	+	R	
Gal⁺	S S	+ -	R S	25 23
Gal⁻	S R R R R/S	- + - -	S R R S S	5 8 6 18 2

TABLE 1. Properties of survivors derived from heatinduced E. coli C ($\lambda cI857xis1$)^a

^a Eleven independent strains of E. coli C lysogenic for $\lambda cI857xisl$, which were altered to be resistant to λ (by selection with λvir), were cultivated in broth to full growth, and a 0.2-ml portion of each culture was plated on EMB-galactose agar plates and incubated at 42°C for 24 h. Red-colored Gal⁺ and white-colored Gal⁻ colonies were picked (about four colonies per lysogen) and purified. The Gal⁺ or Gal⁻ character was verified by testing growth ability on minimal galactose agar supplemented with biotin. Each Gal⁺ or Gal⁻ strain was then tested for unselected markers as follows; ϕ X174 sensitivity (S) or resistance (R) by crossstreak test with phage $\phi X174$ on broth agar; Bio⁺ (ability to grow without added biotin) by streaking on minimal glucose agar plate supplemented with or without 0.1 μ g of biotin per ml; UV (wild-type level of UV resistance or sensitivity) by spreading on broth agar and irradiating at 12 J/m² (Toshiba 15W germicidal lamp). R/S denotes partially ϕ X174-resistant phenotype.

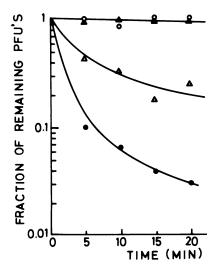


FIG. 2. Kinetics of adsorption of $\phi X174$ to E. coli strains. Bacteria were grown in KC broth, harvested during exponential phase, and suspended at 10° cells

TABLE 2. Adsorption of $\phi X174$ to E. coli with or without induction of the gal operon^a

Carbon source	Induc- tion of <i>gal</i> op- eron	Strain		
		С	RY544	RY528
Glucose	_	1.4	1.8	65
Glycerol		3.3	2.0	93
Glycerol + D-fu- cose	+	3.4	1.6	NT^b

^a Overnight culture from each strain was centrifuged, washed once, resuspended in M9 minimal medium, and added to M9 minimal medium supplemented with 2.5 mM CaCl₂, 0.1 μ g of biotin per ml, 1 μg of thiamine per ml, 400 μg of Casamino Acids per ml, and either 0.6% glucose or 1% glycerol with or without 5 mM D-fucose. After incubation at 37°C with shaking, the exponentially growing culture was centrifuged and resuspended in starvation buffer (3) at 10^9 cells per ml. $\phi X174$ was added at a multiplicity of infection of 2 and incubated at 37°C for 20 min. Other procedures were as described in Fig. 2. Data express percentage of remaining plaque-forming units. RY544 is a derivative of RY528, to which the gal region of E. coli K-12 was transferred by P1 transduction. Properties of other strains are described in the legend to Fig. 2. ^b NT, Not tested.

colony form and normal growth rate as compared with parent strain C. Strain RY530, a partially $\phi X174$ -resistant mutant, exhibited an intermediate adsorption curve (Fig. 2). Efficiency of transfection of strain RY530 with ϕ X174 replicative form was four times higher than that of strain C. Although the nature of the mutation has not been elucidated, there is a possibility that the partial resistance is due to an independent alteration of another gene.

The rates of adsorption of $\phi X174$ to sensitive strains (strain C and RY544) were not affected by the states of expression of gal operon (Table 2). Cells grown in M9 minimal medium supplemented with glucose or glycerol, in which the gal operon is repressed, or cells grown in M9

per ml in the same broth containing 3 mM KCN. Prewarmed cell and phage suspensions were mixed to give a multiplicity of infection of 2 phage per cell, and the mixture was kept at 37°C. At times indicated, 0.1 ml of the mixture was withdrawn and added to 9.9 ml of a minimal medium saturated with chloroform. Appropriately diluted suspension was plated with E. coli C to titer number of unadsorbed phage (plaque-forming units [PFU]). (•) E. coli strain C $(phxA^+ phxB^+);$ (O) strain RY528 [a deletion mutant derived from strain C; $\Delta(phxB-gal-uvrB)$]; (\blacktriangle) strain C600 (a derivative of strain K-12; $phxA^{-} phxB^{+}$); (\triangle) strain RY530 (partially ϕ X174-resistant strain derived from strain C).

minimal medium supplemented with glycerol and D-fucose, in which the *gal* operon is induced (2, 4), adsorbed $\phi X174$ equally well. Thus, the function of *phxB* is independent of the *gal* operon.

We thank K. Shimada, N. Otsuji, and M. Gottesman for phage and bacterial strains and K. Oeda for $\phi X174$ replicative form.

LITERATURE CITED

- Bachmann, B. J., K. B. Low, and A. L. Taylor. 1976. Recalibrated linkage map of *Escherichia coli* K-12. Bacteriol. Rev. 40:116-167.
- Buttin, G. 1963. Mécanismes regulateurs dans la biosynthèse des enzymes du metabolisme du galactose chez *Escherichia coli* K12. I. La biosynthèse induite de la galactokinase et l'induction simultanée de la séquence enzymatique. J. Mol. Biol. 7:164-182.
- Denhardt, D. T., and R. L. Sinsheimer. 1965. The process of infection with bacteriophage φX174. III. Phage maturation and lysis after synchronized infection. J. Mol. Biol. 12:641-646.
- 4. Hua, S.-S., and A. Markovitz. 1972. Multiple regulator

gene control of the galactose operon in *Escherichia coli* K-12. J. Bacteriol. **110**:1089-1099.

- Incardona, N. L., and L. Selvidge. 1973. Mechanism of adsorption and eclipse of bacteriophage φX174. II. Attachment and eclipse with isolated *Escherichia coli* cell wall lipopolysaccharide. J. Virol. 11:775-782.
- Jazwinski, S. M., A. A. Lindberg, and A. Kornberg. 1975. The lipopolysaccharide receptor for bacteriophages φX174 and S13. Virology 66:268-282.
- Ketner, G., and A. Campbell. 1974. A deletion mutation placing the galactokinase gene of *Escherichia coli* under control of the biotin promoter. Proc. Natl. Acad. Sci. U.S.A. 71:2698-2702.
- Lindberg, A. A. 1973. Bacteriophage receptors. Annu. Rev. Microbiol. 27:205-241.
- 9. McFadden, G., and D. T. Denhardt. 1974. Mechanism of replication of $\phi X174$ single-stranded DNA. IX. Requirement for the *Escherichia coli dnaG* protein. J. Virol. 14:1070-1075.
- Schmidt, G. 1973. Genetical studies on the lipopolysaccharide structure of *Escherichia coli* K-12. J. Gen. Microbiol. 77:151-160.
- Sharp, P. A., M.-T. Hsu, E. Ohtsubo, and N. Davidson. 1972. Electron microscope hetroduplex studies of sequence relations among plasmids of *Escherichia coli*. I. Structure of F-prime factors. J. Mol. Biol. 71:471-497.