σ subunit of *Escherichia coli* RNA polymerase affects the function of λ N gene

(transcription/antitermination/host and phage mutants/rifampicin resistance)

Yoshikazu Nakamura, Tatsuya Kurihara, Haruo Saito, and Hisao Uchida*

Institute of Medical Science, University of Tokyo, P.O. Takanawa, Tokyo 108, Japan

Communicated by Charles Yanofsky, June 20, 1979

ABSTRACT A new class of Escherichia coli mutants, referred to as grn, has been isolated by localized mutagenesis. These mutations affect the σ subunit of DNA-dependent RNA polymerase (ribonucleoside 5'-triphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) by abolishing the expression of the λN gene, and they are closely linked to dnaG in the order dnaGgrn-uxaA. Detailed study of one such mutant, grn1, yielded the following results: (i) grn1 is a single mutation and the mutant cell shows cold-sensitivity in growth; (ii) the Grn phenotype of the mutant can easily be suppressed by secondary mutations in the β subunit gene of RNA polymerase; (*iii*) purified holoenzyme of RNA polymerase isolated from the mutant showed an altered salt-dependency in vitro, and the mixed reconstitution of the mutant with the wild-type subunits showed that the σ subunit of the grn1 mutant is altered; (iv) λ phage mutants (λ grg), which overcome the grn mutation, can be classified into two groups, the "nin-deletion" and the "N-mutant" groups (both of these are also able to grow on the previously described groN mutant of Georgopoulos and nusAB of Friedman); (iv) the mutant polymerase transcribed 12S as well as 7S RNA from λ DNA in the presence of the ρ factor *in vitro*. These results indicate that the grn mutation alters the σ subunit of RNA polymerase and that the σ subunit participates in activating the N-mediated antitermination mode of λ phage transcription.

The N protein of λ phage acts as a positive regulator of transcription by permitting "read-through" beyond several termination sites (i.e., t_{L} , \bar{t}_{R1} , t_{R2}) into adjacent "delayed-early" genes of the phage (1). Several host mutations have been reported that specifically block the function of N (2-4). Some of these mutations mapped in the bacterial gene coding for the β subunit of RNA polymerase (*rpoB*), suggesting that N protein interacts with the polymerase (2). Moreover, initiation of transcription apparently affects the proper functioning of Nprotein; N-mediated antitermination failed to take place at known termination sites when transcription was initiated at certain bacterial promoters (5, 6) or at new promoters created by mutation (7). Furthermore, *nutL* mutants of λ phage have been described recently that are defective in *N* utilization only at the leftward termination site, $t_{\rm L}$ (8). The *nutL* site maps immediately downstream from promoter $p_{\rm L}$ at a site corresponding to the actual site of N protein recognition, which differs from the site where N-mediated antitermination takes place. These findings emphasize the importance of the initiation step(s) of transcription for the event of N protein-mediated antitermination. Because the function of the σ subunit of RNA polymerase is essential for proper initiation of transcription (9–11), appropriate mutational alterations of the σ subunit may affect the function of the N protein of λ phage. The structural gene for the σ subunit (*rpoD*) is located at 66 min on the Escherichia coli chromosome (12, 13), and therefore isolation of such a mutation should be feasible by the application of localized mutagenesis to the region. We report in this paper a type of GroN mutation, grn, which appears to be in the structural gene for the σ subunit of RNA polymerase of *E. coli*.

MATERIALS AND METHODS

Bacterial and Phage Strains. The *E. coli* K-12 strains used are listed in Table 1. Phages used were: $\lambda papa$; λvir ; $\lambda cI71$; $\lambda gt-\lambda C$; λgt -rpoD; $\lambda Nsus7nin5$; $\lambda imm21cI$; $\lambda imm434$; $\lambda Nsus7imm434cI$; P1vir; P2. Those strains without indication of source are from our own collection.

Media, Buffers, and Chemicals. The broth and agar media used were as described (16). Minimal medium was medium E (17) with appropriate supplements. Buffers and chemicals used were generally as described (18–20).

Isolation of grn Mutants. Phage P1 grown on a wild-type strain (C600) was mutagenized with hydroxylamine (21, 22), and was used to transduce a tolC strain carrying $\lambda cI857 \Delta H1$ (YN495). Tol⁺ transductants (deoxycholate-resistant colonies) were selected at 33°C on tryptone/yeast agar plates containing 0.05% deoxycholate. They were replica-plated onto EMBO plates seeded with $\lambda cI71$ (10⁸–10⁹ phages per plate) and incubated at 42°C for 24 hr. Temperature-resistant pink colonies not lysed by phage infection were isolated. One of these mutants, called YN524, was used for the present study.

Purification of RNA Polymerase. RNA polymerase was purified essentially according to the procedure described by Burgess and co-workers (23, 24), which consists of prior treatment with polyethylene glycol 6000, chromatography on a calf thymus DNA-cellulose column, and chromatography on a DEAE-cellulose column (18). RNA polymerase preparations thus obtained (containing 70–90% holoenzyme) were used in the present study.

Reconstitution of Holoenzyme from Core and σ . The core enzyme and σ subunit were prepared from purified RNA polymerase as described by Burgess and Jendrisak (23), with chromatography on a Bio-Rex 70 (100–200 mesh) column. Reconstitution of active holoenzyme was carried out by mixing the core and σ fractions in a stoichiometric ratio and dialyzing the mixture against the reconstitution buffer as described (18).

In Vitro Transcription of λ DNA. The reaction system was that of Roberts (25), with minor modifications. The template used was $\lambda b515b519c185757xis6$ DNA. The reaction mixture contained 20 mM Tris-HCl (pH 7.8 at 37°C), 10 mM Mg acetate, 0.1 mM dithiothreitol, 40 µg of bovine serum albumin per ml, 80 mM KCl, 4% glycerol, 0.16 mM XTPs, and [³H]ATP at 4 µCi/ml (1 Ci = 3.7×10^{10} becquerels); RNA polymerase, ρ factor, and DNA were added to give 6, 1, and 4 µg, respectively, per reaction tube containing a total volume of 0.5 ml. Transcription was carried out at 37°C for 20 min and was stopped

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

^{*}To whom reprint requests should be addressed.

	Table 1. Bacterial strains	
Strain	Character	Source or reference
YN203	F^- trpE9829(am) tyr(am) thr	
	pro his argA metE sup-126	
	uxaA dnaG3 tolC rif	
	(ø80h [×] imm434pSuIII ^{ts6})	This paper
YN495	F^- tolC lac(am) supF str	
	$del(bio-ch1A)(\lambda cI857\Delta H1)$	This paper
YN508	F^- tol C^+ grn1 transductant	
	constructed by YN495	
	\times P1(YN524)	This paper
YN524	Same as in YN495	
	except grn1 tolC+	This paper
groN785	groN785 galE sup $^+$	Ref . 2
nusAB27-1	nusA nusB	Ref. 14
C600	${f F}^-$ thr leu tonA lac supE44 thi	
594	F ⁻ gal su ⁻ str	
$Km605[\lambda dv1]$] str his recA1 su ⁻ gal	
	thy trp $[\lambda dv1]$	Ref. 15

by addition of 0.25% Na dodecyl sulfate. After standing for 3 min at 37°C, the mixture was rapidly cooled in an ice bath, and the precipitates that formed were removed by centrifugation. After addition of ribosomal [14C]RNA as a size marker, the supernatant was fractionated by sucrose density gradient centrifugation in a Spinco SW 41 rotor at 37,000 rpm for 14 hr. Acid-insoluble radioactivity was measured.

Electron Microscopic Analysis of Heteroduplexes. The procedure has been described (26).

RESULTS

Isolation of the grn Mutants. The grn mutants of E. coli were obtained by localized mutagenesis of the tolC-rpoD region of the chromosome and selection for cells that specifically abolish the function of the N gene product of λ phage. The parental strain (YN495), used for isolation of the mutants, had a tolC mutation and carried prophage $\lambda cI857 \Delta H1$. [$\Delta H1$ is a deletion that eliminates from the lysogen a region extending from the cro gene of λ to the chlA gene of the bacterium, including the right-hand attachment site of λ (27).] Thus, the prophage could not be excised upon induction. Although the prophage harbored Nsus7Nsus53 mutations, they were suppressed in the YN495 strain by introducing a supF mutation. Therefore, the cell could grow at high temperature (>40°C) only when the function of the N gene was abolished and the expression of the kil gene of the prophage was prevented (28). A similar rationale was previously used for selecting GroN mutants of E. coli (29). Localized mutagenesis was accomplished by transduction with hydroxylamine-treated P1 phage (21, 22) and selecting for Tol⁺ transductants. Among 2×10^4 transductants selected at 33°C, 10 could grow at 42°C without losing immunity to λ . These *E*. *coli* mutants were named *grn* mutants (for groN-type), and one of them, YN524[grn1], was studied in detail.

Table 2 lists the efficiency of plating of various derivatives of λ phage on grn^+ and grn1 bacteria. On grn1 mutant bacteria, growth of those phages that require the function of the λN gene for growth was severely impaired, especially at high temperature. On the other hand, those phages that do not depend on the function of λN gene (i.e., those harboring the *nin5* deletion or *imm21* substitution) grew well on the mutant bacteria. Other coliphages (i.e., T4, T5, T6, T7, P1, P2, and BF23) multiplied normally on grn1 bacteria.

It is interesting to note that the grn1 mutant did not form colonies at 20°C. Thus, it is cold-sensitive (Cs character).

Table 2. Efficiency of plating of various phages on grn^+ and

gini bacteria				
Phage	Temperature, °C	C600 (grn ⁺)	YN495 (grn+)	YN524 (grn1)
λvir	33	1	1.15	7×10^{-5}
-	40	1		$<5 \times 10^{-10}$
λραρα	40	1		$<2 \times 10^{-8}$
λcI71	40	1	—	$< 2 \times 10^{-8}$
$\lambda Nsus7nin5$	40	1		0.09
$\lambda gt - \lambda C'$	40	1	_	0.35
λimm434	33	1	0.82	3×10^{-3}
	40	1		$< 3 \times 10^{-7}$
λimm21cI	33	1	1.14	0.54
	40	1	—	0.39

Spontaneous Cs⁺ revertants able to grow at 20°C were selected and examined for the capacity to support development of $\lambda papa$ or $\lambda c I71$. Of 10 Cs⁺ revertants tested, 7 allowed phage to grow at high temperature. In another experiment, the grn 1 mutation was transduced into temperature-sensitive YN495, and Tol⁺ transductants were selected. Of 789 Tol⁺ transductants, 425 (54%) could grow at 42°C. These temperature-resistant transductants, without exception, could not grow at 20°C. On these transductants, λN -dependent phages such as $\lambda c I71$ or $\lambda v ir$ could not grow, but $\lambda g t - \lambda C$ (a λN -independent phage) could grow at high temperature. We conclude that a single mutation, grn 1, is responsible for both the Cs and Grn phenotypes.

The location of the grr.1 mutation was determined more precisely by P1-transduction using the mutant as donor and strain YN203 [tolC dnaG uxaA] as recipient. The results presented in Table 3 indicate that the grn1 mutation is closely linked to dnaG on the side of uxaA. The location is the same as that of the *rpoD* gene as determined in previous experiments (18, 30–32).

Alteration of the β Subunit of RNA Polymerase Suppresses the grn1 Mutation. Mutations conferring resistance to rifampicin are known to alter the β subunit of RNA polymerase (33). If the grn1 mutation indeed affected the structure of the σ subunit, appropriate secondary mutations in the *rpoB* gene conceivably could suppress the original mutation. Therefore, spontaneous rifampicin-resistant (*rif*) derivatives of the grn1 mutant were isolated and examined for their Grn phenotypes. Nine of 19 *rif* derivatives were scored as Grn⁺ because they regained the capacity to allow growth of λ phages. In addition, several *rif* mutations suppressed the cold-sensitivity associated with the grn1 mutation. The suppressor function of secondary *rif* mutations strongly suggests that there is a physical interaction between the β subunit and the grn gene product, which may be the σ subunit of RNA polymerase.

Mutants of λ Phage Able to Grow on grn1 Mutant Bacteria. Mutants of λ phage able to form plaques on the grn1 mutant (hereafter referred to as λ grg) were isolated by plating

Table 3. Genetic mapping of grn1 mutation by P1 transduction*

Unselected markers		Colonies		
dnaG	grn1	uxaA	No.	% of total
1	1	1	14	14
1	0	1	1	1
1	1	0	47	47
1	0	0	4	4
0	0	0	34	34

Donor: $YN524 = [tolC^+dnaG^+grn1 uxaA^+] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ Recipient: $YN203 = [tolC dnaG grn^+ uxaA] = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ * Selected marker, Tol⁺. phages on grn1. Table 4 summarizes the plating efficiencies of seven independently isolated λgrg phages on grn1, groN785 (2), and nusAB27-1 (14) mutant bacteria. The data indicate that the mutant phages isolated on grn1, hereafter called "overcomer phages," are also able to develop plaques on previously described mutant bacteria in which N expression is prevented. Upon close examination of the λ mutants, it appears that the λgrg phages can be classified into two groups according to their efficiency of plating on grn1 bacteria; three phage mutants- $\lambda grg2$, $\lambda grg3$, and $\lambda grg5$ —plated with high efficiency, whereas the rest of the phages plated with much reduced efficiencies. Electron microscopic analysis of appropriate heteroduplexes disclosed that the former group of λgrg phages harbored *nin*5-like deletions eliminating the $t_{\rm B2}$ termination site. Therefore, they are listed as "nin deletion" types in Table 4. Apparently, these λgrg mutants acquired plating ability by losing the t_{R2} site and thus became "N-independent." This implies that the grn1 mutant is in fact a GroN-type mutant in which the expression of the λN gene is abolished. It should also be noted that at least the rightward promoter, $p_{\rm R}$, is recognized by RNA polymerase of grn1 mutant cells.

Heteroduplexes of the remaining class of λgrg DNA with $\lambda imm434$ DNA were also examined by electron microscopy. No insertion or deletion could be found anywhere in the nin5 region. Accordingly, the mutant sites in these phages were mapped by crosses with $\lambda Nsus7imm434cI$, selecting for sus-+imm434 recombinants, and examining their growth on grn1 bacteria. The results are presented in Table 5 ($\lambda grg6$ was not examined). These findings indicate that the overcomer mutations of $\lambda grg1$, $\lambda grg4$, and $\lambda grg7$ are closely linked to *imm434*. Because the behavior of these grg mutations can be most easily explained by assuming that they are mutations altering the Nprotein, they are tentatively designated "N-mutants" in Table 4. (On the other hand, the result of the cross involving $\lambda grg3$ is consistent with the electron microscopic observation that the mutant phage harbors a nin5-like deletion which eliminates the $t_{\rm R2}$ termination site.)

Another set of crosses was carried out between $\lambda grgimm434$ phages and $\lambda dv l$ plasmids to map the grg mutations more precisely. The results obtained are also presented in Table 5. Although very rare, grg+ recombinant phages were found among λvir recombinants in crosses involving grg4 and grg7. Therefore, these mutations are covered by the dv1 region and are close to its left-hand terminus. The segment defined by the two left-hand ends of the $\lambda dv1$ and *imm*434 regions is about 124 base pairs long (8). Nsus7 is known to be a promoter-distal mutation, and N polypeptides produced by infection of the wild-type and Nsus7 phages have been identified as having molecular weights of 13,500 and 10,500, respectively (34). However, the exact site of the λ genome which codes for the amino terminus of the wild-type N protein is not known. If "N-mutant"-type grg mutations were in fact mutations within the N cistron, the cistron should start within the $\lambda dv1$ -imm434

Table 4. Efficiency of plating of overcomer phages on various GroN bacteria

Overcomer	Ef			
λ mutants	_grn1	groN785	nusAB27-1	Type
λgrg1	0.04	0.65	0.97	N mutant
$\lambda grg2$	1.01	0.80	1.26	nin deletion
$\lambda grg3$	0.4	1.05	1.26	nin deletion
$\lambda grg4$	0.02	0.62	1.36	N mutant
$\lambda grg5$	0.78	0.84	1.37	nin deletion
λgrg6	0.003	0.01	0.79	Unknown
λgrg7	0.007	0.61	0.85	N mutant

Table 5. Genetic mapping of grg mutations

		Recombinants, no.	
Cross	Selection	Total	grg+(%)
$\lambda grg1 \times \lambda Nsus7imm434$	sus+imm434	233	198 (85.0)
$\lambda grg3 \times \lambda Nsus7imm434$	sus+imm434	200	200 (100.0)
$\lambda grg4 \times \lambda Nsus7imm434$	sus+imm434	190	156 (82.1)
$\lambda grg7 \times \lambda Nsus7imm434$	sus+imm434	177	138 (78.0)
$\lambda grg1imm434 \times \lambda dv1$	vir	320	0 (0.0)
$\lambda grg4imm434 \times \lambda dv1$	vir	215	2 (0.9)
$\lambda grg7imm434 \times \lambda dv1$	vir	235	1 (0.4)

For crosses between two phages, C600 cells were infected with phages at a multiplicity of 5 each. $sus^{+}imm434$ recombinant phages were selected on 594(λ) and were tested for the grg character on the grn1 mutant, YN524. For crosses between $\lambda dv1$ plasmid and $\lambda grgimm434$ phages obtained in the above crosses, Km605 carrying the plasmid was infected with phage at a multiplicity of 3. λvir recombinants were selected on C600($\lambda imm434$) and tested for the grg character.

segment. The segment contains one GUG initiation codon at 90–92 bases from the 5' terminus of the p_L transcript (35). It should be noted that these "N-mutant" grg phages plate on groN785 and nusAB27-1 mutant bacteria with efficiencies higher than those on grn1, on which they were originally selected (Table 4).

Altered Salt-Dependency of RNA Polymerase from the grn1 Strain. The results presented above suggest that the σ subunit of RNA polymerase may be altered in the grn1 mutant. To test whether the grn1 mutation directly affects the σ subunit, we measured the salt-dependence of transcription by purified enzyme from a grn1 transductant, YN508, and its isogenic parent YN495. When equal weights of the enzyme from grn1 and grn + strains were assayed with T7 DNA as a template, transcription by the polymerase from YN508 was considerably more salt resistant than that from YN495 (Fig. 1A). To identify the altered subunit, purified holoenzymes from mutant and wild-type cells were separated into σ and core fractions and were mixed in various combinations to reconstitute holoenzymes. Their activities were tested at a fixed salt concentration (0.16 M KCl) and at various temperatures. The results indicated that the σ subunit of the grn1 RNA polymerase was altered (Fig. 1B).

FIG. 1. Alteration of RNA polymerase produced by grn1 mutant cells. (A) Effect of KCl concentration on the activity of grn1 RNA polymerase. RNA polymerase holoenzyme was purified from grn1 (YN508) and its parent strain (YN495). Enzyme activities were assayed with T7 DNA template at the indicated KCl concentrations for 10 min at 30°C. The reaction mixture was as described (18). O, Mutant enzyme; \bullet , wild-type enzyme. (B) Mixed reconstitution of the mutant with the wild-type subunits. Enzyme activities were assayed with T7 DNA template at the indicated temperatures for 20 min at 0.16 M KCl. O, Mutant core + mutant σ ; \bullet , wild-type core + wild-type σ .

Leftward Transcription of λ DNA by the grn1 RNA Polymerase. The GroN character of the grn1 mutant can be explained by postulating either that N protein is produced in the cell but is unable to function or that N protein is not produced because the $p_{\rm L}$ promoter is not recognized by the grn1 σ subunit. To distinguish between these alternatives, in vitro transcripts of λ DNA (produced by the mutant polymerase in the presence of ρ factor) were analyzed. Wild-type RNA polymerase produces a 7S rightward transcript and a 12S leftward transcript, encoding the polypeptide products of cro and N. respectively (25). The results presented in Fig. 2 indicate that the mutant RNA polymerase produces 12S RNA as well as 7S RNA. This shows that, at least in vitro, the $p_{\rm L}$ as well as the $p_{\rm R}$ promoter is recognized by the mutant polymerase and that transcription is terminated in the presence of the ρ factor at the normal termination sites. Because there is no reason to assume that translational activity is impaired in the mutant bacteria, we conclude that the N protein is produced but does not function in grn1 mutant cells.

Because grn mutants were originally isolated by selecting bacterial mutants in which expression of the λ kil gene was prevented, it may be argued that we have selected bacteria tolerant to the kil gene function without preventing λ N function. To examine this possibility, we looked for expression of λ genes other than kil. Expression of the spi gene in the left arm of λ is under N control and is required for inhibition of λ growth by prophage P2. In fact, $\lambda gt \cdot \lambda C$ harboring the nin5 deletion does not grow on a P2 lysogen of C600. However, the phage was able to grow at 40°C on P2 lysogens of grn1 as well as nusAB mutants, indicating the grn1 as well as nusAB mutations block leftward transcription beyond $t_{\rm L}$, abolishing transcription and expression of the spi gene (data not shown). On the other hand, growth of a transducing phage, λgt -rpoD, carrying rpoD was strongly impaired on a P2 lysogen of grn1

FIG. 2. Transcription of λ DNA *in vitro* by the *grn1* RNA polymerase. ³H-Labeled transcripts (O) of λ DNA produced in the presence of ρ factor were fractionated by sucrose density gradient centrifugation. ¹⁴C-Labeled *E. coli* ribosomal RNA (\bullet) was added as reference markers.

cells, whereas the transducing phage grew well on a P2 lysogen of *nusAB*. These results indicate that the *spi* gene is expressed in the *grn1*(P2) cells using the wild-type σ subunit produced by λgt -*rpoD*.

DISCUSSION

Our studies demonstrate that a mutation called grn1 alters the σ subunit of E. coli RNA polymerase and that this alteration specifically affects the antitermination function of the N protein of phage λ . The first inference is based on the following findings. (i) The genetic locus of the grn1 mutation is at 66 min on the E. coli chromosome and the order is tolC-dnaG-grn1-uxaA; the location is exactly the same as that of rpoD. (ii) Spontaneous mutations introduced into the β subunit gene (*rpoB*) of RNA polymerase often suppressed the phenotype of the grn1 mutation. Furthermore, grn1 confers on E. coli the property of cold-sensitive growth, suggesting that the product of the grn1 gene is unable to assemble into an active structure at 20°C. (iii) RNA polymerase holoenzyme purified from grn1 cells is more salt-resistant in vitro than the enzyme obtained from isogeneic grn + cells. Enzyme reconstitution experiments indicated that the altered component is the σ subunit.

The second inference, that the grn1 mutation specifically blocks N protein function, is based on the following evidence. (i) Although λ N-dependent phages do not form plaques on the mutant bacteria, " λ N-independent" phages harboring the nin5 deletion or imm21 substitution do plate on grn1. (ii) Two 'delayed-early'' genes of λ , *kil* and *spi*, cannot be expressed in the mutant cell. (iii) Phage mutants, referred to as λgrg , could be selected on grn1, and they also plate on previously described groN785 and nusAB27-1 cells (2, 14), in which wild-type λ phage does not multiply because λN expression is abolished. Some of these λgrg phages were deletion mutants that have lost the rightward termination site, t_{R2} . We postulate that λ Ndependent phages cannot multiply in grn1 cells because the antitermination function at t_{R2} does not operate despite the fact that rightward transcription has been initiated at $p_{\rm B}$. (iv) 12S RNA as well as 7S RNA is produced normally from λ DNA by the mutant RNA polymerase purified from grn1 cells (Fig. 2). This result argues against the possibility that the mutant polymerase is unable to recognize the $p_{\rm L}$ promoter, even though it transcribes from $p_{\rm R}$.

N protein is believed to interact with the β subunit of RNA polymerase, because mutational alteration of the β subunit blocks expression of N function (2). Analogously, the present results indicate that at some stage N protein also interacts with the σ subunit of RNA polymerase. N protein does not act directly on termination factors to effect antitermination, but it exerts its influence by modifying RNA polymerase at a cisacting site located upstream from the terminator site on DNA (5, 6). In fact, Salstrom and Szybalski (8) described mutations that define a new kind of *cis*-acting recognition site controlling an early step in the N-mediated antitermination mode of leftward transcription; they designated the site nutL, for N utilization. Thus, we may visualize that σ subunit remains bound to core polymerase transcribing template DNA until the polymerase moves down to the nutL site where N-mediated modification takes place. Because *nutL* is mapped within an interval defined by the left ends of the $\lambda dv1$ plasmid and the imm434 substitution, the site is clearly outside the $p_{\rm L}$ promoter (8). An alternative model assumes that σ protein is replaced by N protein at the promoter site, but N does not modify RNA polymerase until the N-core complex moves down to the nutL site. The grn1 mutation of the σ subunit prevents formation of the N-core complex. This model retains the presently accepted notion of the " σ -cycle" (36).

Genetics: Nakamura et al.

 $\lambda imm21$ grows on grn1 cells (Table 2) but fails to grow on groN785, nusA, and nusB (2, 14). This appears to indicate that the block exerted by the grn1 mutation is "weaker" than that exerted by other mutations. However, poor "overcomer" phages selected on grn1 cells grew more easily on groN785 and nusAB27-1 (Table 4), indicating that grn1 is even more restrictive than other mutations. Therefore, the block of N function caused by alteration of the σ subunit is specific to λ N protein or to a combination of the λN protein and the nutL site.

The frequent occurrence of secondary-site suppressors of the grn1 mutation among spontaneous rifampicin-resistant mutants suggests that alteration of the β subunit can easily compensate for alteration of the σ subunit. Thus, it may be possible to visualize that λgrg overcomer mutants of the "N-mutant" type may not necessarily confer a new modification on the σ subunit, but they may be those that confer on the β subunit modifications different from those affected by wild-type λN . The altered modification of the β subunit by λgrg phages of the "N-mutant" type might be those that simultaneously suppress other bacterial mutations blocking the λ N function. Because the mechanism of the suppression, as now visualized, bypasses restoration of the proper interaction between the σ protein of the grn1 mutant \overline{RNA} polymerase and λN , this would explain why poor overcomer mutants on grn1 could be good overcomer mutants on groN785 or nusAB27-1 cells.

The authors thank Drs. Charles Yanofsky and H. Stanley Bennett for assistance with revision of the manuscript. This work was supported in part by a grant from the Ministry of Education, Science and Culture of the Japanese Government.

- Echols, H. (1971) in *The Bacteriophage Lambda*, ed. Hershey, A. D. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), pp. 247–270.
- Georgopoulos, C. P. (1971) Proc. Natl. Acad. Sci. USA 68, 2977–2981.
- 3. Ghysen, A. & Pironio, M. (1972) J. Mol. Biol. 65, 259-272.
- Friedman, D. I., Jolly, C. T. & Mural, R. J. (1973) Virology 51, 216–226.
- Adhya, S., Gottesman, M. & de Crombrugghe, B. (1974) Proc. Natl. Acad. Sci. USA 71, 2534–2538.
- 6. Franklin, N. C. (1974) J. Mol. Biol. 89, 33-48.
- Friedman, D. I. & Ponce-Campos, R. (1975) J. Mol. Biol. 98, 537-549.
- Salstrom, J. S. & Szybalski, W. (1978) J. Mol. Biol. 124, 195– 221.

- 9. Burgess, R. (1971) Annu. Rev. Biochem. 40, 711-740.
- 10. Chamberlin, M. J. (1974) Annu. Rev. Biochem. 43, 721-775.
- 11. Burgess, R. R., Travers, A. A., Dunn, J. J. & Bautz, E. K. F. (1969) Nature (London) 221, 43-46.
- 12. Nakamura, Y., Osawa, T. & Yura, T. (1977) Proc. Natl. Acad. Sci. USA 74, 1831–1835.
- 13. Harris, J. D., Martinez, I. I. & Calendar, R. (1977) Proc. Natl. Acad. Sci. USA 74, 1836-1840.
- Friedman, D. I., Baumann, M. & Baron, L. S. (1976) Virology 73, 119–127.
- 15. Matsubara, K. (1972) Virology 50, 713-726.
- 16. Saito, H. & Uchida, H. (1977) J. Mol. Biol. 113, 1-25.
- Vogel, H. J. & Bonner, D. M. (1956) J. Biol. Chem. 218, 97– 106.
- 18. Nakamura, Y. (1978) Mol. Gen. Genet. 165, 1-6.
- Saito, H., Nakamura, Y. & Uchida, H. (1978) Mol. Gen. Genet. 165, 247-256.
- 20. Nakamura, Y. & Yura, T. (1975) Mol. Gen. Genet. 141, 97-111.
- Hong, J.-S. & Ames, B. N. (1971) Proc. Natl. Acad. Sci. USA 68, 3158–3162.
- 22. Nashimoto, H. & Uchida, H. (1975) J. Mol. Biol. 96, 443-453.
- 23. Burgess, R. R. & Jendrisak, J. J. (1975) Biochemistry 14, 4634-4638.
- Gross, C., Engbaek, F., Flammang, T. & Burgess, R. (1976) J. Bacteriol. 128, 382–389.
- 25. Roberts, J. W. (1969) Nature (London) 224, 1168-1174.
- 26. Saito, H. & Uchida, H. (1978) Mol. Gen. Genet. 164, 1-8.
- 27. Castellazzi, M., Brachet, P. & Eisen, H. (1972) Mol. Gen. Genet. 117, 211–218.
- 28. Greer, H. (1975) Virology 66, 589-604.
- 29. Keppel, F., Georgopoulos, C. P. & Eisen, H. (1974) Biochimie 56, 1503–1509.
- Gross, C., Hoffman, J., Ward, C., Hager, D., Burdick, G., Berger, H. & Burgess, R. (1978) Proc. Natl. Acad. Sci. USA 75, 427– 431.
- Travers, A. A., Buckland, R., Goman, M., Le Grice, S. S. & Scaife, J. G. (1978) Nature (London) 273, 354-358.
- Harris, J. D., Heilig, J. S., Martinez, I. I., Calendar, R. & Isaksson, L. A. (1978) Proc. Natl. Acad. Sci. USA 75, 6177–6181.
- 33. Heil, A. & Zillig, W. (1970) FEBS Lett. 11, 165–168.
- 34. Shaw, J. E., Jones, B. B. & Pearson, M. L. (1978) Proc. Natl. Acad. Sci. USA 75, 2225-2229.
- Dahlberg, J. E. & Blattner, F. R. (1975) Nucleic Acids Res. 2, 1441–1458.
- Travers, A. A. & Burgess, R. R. (1969) Nature (London) 222, 537-540.