Selection for Loss of Tetracycline Resistance by *Escherichia* coli

STANLEY R. MALOY* AND WILLIAM D. NUNN

Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717

An improved medium for the direct, positive selection of tetracycline-sensitive clones from a population of tetracycline-resistant strains of *Escherichia coli* is described.

Various genetic techniques have been developed requiring the excision of the tetracyclineresistant transposon Tn10 from an insertion site within a gene (5). Furthermore, several plasmid vector systems allow genetic cloning by insertional inactivation of tetracycline resistance (3). A direct, positive selection for tetracycline-sensitive bacteria would be extremely valuable for these studies. Bochner et al. (2) recently described a technique for the direct selection of tetracycline-sensitive (Tc^{*}) clones from a predominantly tetracycline-resistant (Tcr) population of bacteria. They developed a selective medium based upon the inhibition of Tc^r bacteria by the lipophilic chelating agents fusaric acid or quinaldic acid. This medium was found to be effective for the selection of Tc^{*} revertants of strains of Salmonella typhimurium which were Tc^{r} due to the insertion of the transposon Tn10in their chromosomes (2). In addition, the authors reported success in selecting Tc* revertants of the Escherichia coli strain JC1036 (thr-1 leu-6 ara-14 proA2 lacY1 tsx-33 galK2 his-4 rpsL31 xyl-5 mtl-1 argE2 thi-1 srlC300::Tn10). However, the medium described by Bochner et al. (2) is much less effective with most strains of E. coli. When most Tc^r strains of E. coli K-12 are plated on this medium, a high background of Tc¹ colonies develops, necessitating extensive purification to isolate Tc^{*} colonies and eliminating the feasibility of direct replica plating. Thus, the usefulness of this medium in genetic studies with a variety of E. coli strains and in E. coli used as ' a host for genetic cloning is limited.

We sought to optimize the Tc^{*} medium of Bochner et al. (2) for application to *E. coli*. We initially attempted to modify their medium by varying the concentrations of the selective agents described by Bochner et al. (2). Varying the concentrations of NaCl, NaH₂PO₄, chlortetracycline hydrochloride, fusaric acid, and ZnCl₂ did not result in any significant improvement in differentiating between Tc^{*} and Tc^r strains (data not shown). Furthermore, neither the substitution of fusaric acid with quinaldic acid nor the

use of both fusaric acid and quinaldic acid together enhanced the differentiation between Tc* and Tc^r strains. However, we observed that although less than 10% of the colonies arising from fast-growing Tc^r strains of E. coli plated on this medium were Tc^s, somewhat better results were obtained with slow-growing strains. When the growth rate of strains was slowed, as in severely mutated strains or strains bearing a recA mutation, up to 50% of the colonies from the Tc^{*} plates showed the Tc^{*} phenotype. Thus, we reasoned that decreasing the nutrient concentration would slow the growth of the background Tc^r bacteria while allowing sufficient growth of Tc^{*} colonies. Improved differentiation of Tc^{*} and Tc^{*} strains was obtained by eliminating glucose and decreasing the concentration of tryptone to 0.5%. Similar results were obtained when nutrient broth (Difco) was substituted for the tryptone and yeast extract with less fastidious strains. The composition of this modified Tc^s medium is shown in Table 1. A comparison of the modified Tc^s medium with the medium described by Bochner et al. (2) was made with a variety of fadR13:: Tn10 strains of E. coli K-12 with different genetic backgrounds (Table 2). These results are shown in Table 3. For most strains tested, approximately 90% of the colonies obtained on the modified Tc^s medium were found to be Tc^s when directly replica plated as described in Table 3, whereas less than 10% of the colonies from the original Tc^{*} medium described by Bochner et al. (2) were found to be Tc^{*} (Table 3). The frequency of isolation of Tc^s clones on the modified Tc^s plates was ca. 10⁻⁴ per bacterium. Similar results were obtained for Tn10 insertions at other chromosomal loci, including fadL::Tn10, zji::Tn10, srlA::Tn10, zaf::Tn10, and zda::Tn10 (data not shown). As described above, the original Tc^{*} medium was somewhat more effective with slow-growing strains of E. coli. These results may explain the success of Bochner et al. (2) with strain JC1036. With slow-growing strains, the modified Tc* plates also allowed 90% selection for Tc^{*} clones; however, 36 to 48 h of incubation was required for growth. Thus, the modified Tc^{*} plates were found to be suitable for selection of Tc^{*} clones from Tc^{*} derivatives of all *E. coli* strains studied. Optimal selection resulted by plating 0.1 ml of a dilution containing 10^6 to 10^7 cells per ml and incubating for 24 to 48 h at 37° C.

Although the medium of Bochner et al. (2) was effective with certain strains of *E. coli* useful for genetic cloning, it was ineffective with several strains extensively used for this purpose, including strain C600. We have found that the modified Tc^s plates work well with strain C600 also (Table 3), further extending the usefulness of this technique. Strains containing the intact pBR322 plasmid were unable to grow on the modified Tc^s plates, whereas recombinant plasmids with insertions in the *Bam*HI or *Hin*dIII sites of the Tc^r gene of pBR322 grew readily on these plates (data not shown). In contrast, the medium of Bochner et al. (2) allowed growth of a heavy background of Tc^r cells containing the intact

TABLE	1.	Composition	of	^r modi	fied	Tc*	plates

Ingredient ^a	g/liter
Agar	
Tryptone broth ^b	. 5
Yeast extract	
Chlortetracycline hydrochloride (12.5 mg/ml) ^c	. 4 ^d
NaCl	. 10
NaH ₂ PO ₄ ·H ₂ O	. 10
Fusaric acid (2 mg/ml)	
ZnCl ₂ (20 mM)	. 5 ^d

^a Agar, tryptone broth, yeast extract, chlortetracycline hydrochloride, and NaCl were dissolved in 1 liter of distilled water, autoclaved for 20 min at 121°C, and cooled to ca. 45°C before addition of NaH₂PO₄·H₂O and fusaric acid as separately sterilized solutions.

^b Alternatively, the tryptone and yeast extract may be substituted with nutrient broth for less fastidious strains.

 $^{\circ}$ Chlortetracycline hydrochloride was prepared as a 12.5-mg/ml solution and stored in the dark at 4 $^{\circ}$ C before use.

^d Milliliters per liter.

pBR322. Inclusion of ampicillin to prevent plasmid segregation did not affect the efficiency of the modified Tc^s plates in these studies. In addition, H. Moyed and K. Bertrand (personal communication) have used these media during studies involving cloning of Tc^r fragments of Tn10 into the plasmid pACYC177 in *E. coli*. They found the modified Tc^s plates to be much more effective for selection of Tc^s and fusaric acid-resistant derivatives of such clones.

The modification of the Tc^{*} medium described in this paper should increase the usefulness of this technique for workers studying *E. coli* ge-

 TABLE 3. Efficiency of Tc* selection with original and modified Tc* media with E. coli strains

	No. of colonies in following medium ^a						
Strain	A			В			
	Tc*	Tcr	% Tc*	Tc*	Tcr	% Tc*	
RS3040	7	171	3.93	171	7	96.07	
LS5700	11	60	15.49	80	9	89.89	
LS5701	3	86	3.49	82	7	92.13	
LS5702	10	56	17.86	76	13	85.39	
LS5703	0	89	0	79	10	88.76	

^a Medium A was the original Tc^{*} medium described by Bochner et al. (2). Composition of this medium was as follows: 15 g of agar, 10 g of tryptone, 5 g of yeast extract, 10 g of NaCl, 2 g of glucose, 0.05 g of chlortetracycline hydrochloride, 10 g of NaH₂PO₄·H₂O, 6 ml of fusaric acid (2 mg/ml), and 5 ml of 20 mM ZnCl₂ per liter. Medium B was the modified Tc* medium described in Table 1. Bacteria were grown to ca. $6 \times$ 10^8 cells per ml in rich broth medium (6) and diluted to an appropriate density in M9 minimal medium (6), and 0.1-ml portions were plated on the above media and on rich broth plates for viable cell counts. Cultures were incubated for 24 to 48 h at 37°C. Colonies from the Tc^{*} plates were replica plated by stippling onto Tc^{*} plates, rich broth plates containing 20 µg of tetracycline per ml, and rich broth plates.

TABLE 2. Bacterial strains used

Strain	Genotype ^a	Source
RS3040	fadR13::Tn10	R. Simons et al. (7)
JC1552	argG6 metB1 his-1 leu-6 trp-31 mtl-2 xyl-7 malA1 gal-6 lacY1 str-104 tonA2 tsx-1 supE44	A. Clark strain via CGSC ^b
LS5700	JC1552 fadR13::Tn10	This work
JK268	dadR1 trpE61 trpA62 tna-5 purB58	J. Kuhn strain via CGSC ^b
LS5701	JK268 fadR13::Tn10	This work
H680	purB51 trp-45 his-68 tyrA2 thi-1 lacY1 gal-6 malA1 xyl-7 mtl-Z strA125 tonA2 tsx-70 supE44	P. de Haan strain via CGSC ^b
LS5702	H680 fadR13::Tn10	This work
C600	thi-1 thr-1 leu-6 lacY1 tonAz1 supE44	R. Appleyard strain via CGSC ^b
LS5703	C600 fadR13::Tn10	This work

^a Tn10 insertions were as previously described (4, 5). When an insertion is not within a known gene, it is given a three-letter symbol starting with z, and the second and third letters indicate the numerical position on the E. coli K-12 linkage map (1) (e.g., zaf corresponds to 5 min).

and the third letter (e) indicates that the insertion is in the E. coli chromosome.

^b Obtained from B. Bachmann, Coli Genetic Stock Center (CGSC), Yale University, New Haven, Conn.

1112 NOTES

netics and using E. coli as a host for genetic cloning.

We thank Barry Bochner for providing a preprint of work before publication. We thank Harris Moyed and Kevin Bertrand for discussions of unpublished observations on the use of the modified Te^{*} medium. We are grateful to Harris Moyed, Kevin Bertrand, and Paula Hennen for critically reading the manuscript.

This work was supported by Public Health Service grant GM22466-1A from the National Institute of General Medicine and grant PCM-7727140 from the National Science Foundation. W.D.N. is an Established Investigator of the American Heart Association. S.R.M. was supported by training grant GM07311 from the National Institute of General Medicine.

LITERATURE CITED

 Bachmann, B. J., and K. B. Low. 1980. Linkage map of Escherichia coli K-12, edition 6. Microbiol. Rev. 44:1-56.

- Bochner, B. R., H. Huang, G. L. Schieven, and B. N. Ames. 1980. Positive selection for loss of tetracycline resistance. J. Bacteriol. 143:926-933.
- Bolivar, F., R. L. Rodriguez, P. J. Greene, M. V. Betlach, H. L. Heynecker, H. W. Boyer, J. H. Cross, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95-113.
- Chumley, F. G., R. Menzel, and J. R. Roth. 1980. Hfr formation directed by Tn10. Genetics 91:639-655.
- Kleckner, N., J. Roth, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. J. Mol. Biol. 116:125-159.
- Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Simons, R. W., P. A. Egan, H. T. Chute, and W. D. Nunn. 1980. Regulation of fatty acid degradation in *Escherichia coli*: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J. Bacteriol. 142:621-632.