Magnesium transport in *Salmonella typhimurium*: the influence of new mutations conferring Co²⁺ resistance on the CorA Mg²⁺ transport system

M. M. Gibson,^{1†} D. A. Bagga,¹ C. G. Miller^{2‡} and M. E. Maguire¹*

¹Department of Pharmacology, and ²Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

Summary

The CorA Mg²⁺ transport system of Salmonella typhimurium mediates both influx and efflux of Mg²⁺. Mutations at the *corA* locus (83.5 min) confer resistance to Co²⁺. Using transposon mutagenesis, three additional Co²⁺ resistance loci (*corB*, *corC*, and *corD*) were found and mapped to 55, 15, and 3 min, respectively, on the *S. typhimurium* chromosome. No mutations corresponding to the reported *corB* locus at 95 min in *Escherichia coli* were obtained. The *corB*, *corC*, and *corD* mutations confer levels of Co²⁺ resistance intermediate between those of the wildtype and *corA* mutations.

Isogenic strains were constructed containing combinations of transposon insertion mutations in each of the three Co²⁺-resistance loci to assess their influence on the CorA Mg2+ transport system. The Vmax and Km values for ²⁸Mg²⁺ or for ⁵⁷Co²⁺ and ⁶³Ni²⁺ influx, analogues of Mg2+ transported by the CorA system, were changed less than twofold compared with the wild-type values, regardless of the mutation(s) present. However, while efflux of ²⁸Mg²⁺ through the CorA system was decreased threefold in strains carrying one or two mutant alleles among corB, corC, or corD, efflux was completely abolished in either a corA or a corBCD strain. Thus, although the corA gene product is necessary and sufficent to mediate Mg2+ influx, Mg²⁺ efflux requires the presence of a wild-type allele of at least one of the corB, corC or corD loci.

Introduction

Three genetically distinct and independent transport systems, CorA, MgtA and MgtB, serve to mediate the transport of Mg²⁺ across the cell membrane of *Salmonella typhimurium* (Hmiel *et al.*, 1986; 1989). The CorA system is constitutively expressed and is the predominant system for accumulation of Mg²⁺ under normal growth conditions in this organism and, probably, most Gram-negative bacteria (Hmiel *et al.*, 1986; Snavely *et al.*, 1989a,b). The MgtA and MgtB transport systems are expressed under conditions of relative Mg²⁺ starvation (Snavely *et al.*, 1989b; 1991).

Wild-type S. typhimurium is sensitive to the cytotoxic effects of Co2+ ions. Hmiel et al., (1986; 1989) previously isolated both spontaneous and MudJ insertion mutations within a gene whose product was required for the transport of both Mg2+ and Co2+. Mutations in this gene, designated corA, impart resistance to high levels of Mg2+ in the growth medium, lack detectable Co2+ uptake, and show diminished levels of Mg²⁺ uptake. Similar mutations had previously been identified in Escherichia coli (Silver, 1969; Lusk and Kennedy, 1969), and the corA locus maps to about 83 min in both species. Further, cloned corA genes from E. coli or S. typhimurium encode functionally similar gene products, as shown by their ability to complement corA mutations in either species. Finally, at least in S. typhimurium, the CorA transport system mediates uptake of Ni²⁺ in addition to Mg²⁺ and Co²⁺, and strains carrying a mutant corA allele show a complete absence of Mg2+ efflux (Snavely et al., 1989b; 1991).

Park *et al.* (1976) identified an additional locus in *E. coli*, designated *corB*, mutations in which give rise to resistance to lower concentrations of Co^{2+} relative to a *corA* strain. This locus was shown to map to 95 min on the *E. coli* chromosome (cotransducible with the *pyrB* gene). In addition, a regulatory role for *corB* was implicated as it appeared to be required for the expression of *corA* at low (100 μ M) levels of extracellular Mg²⁺. We therefore sought to identify additional Co²⁺ resistance mutations in *S. typhimurium* to determine whether any such mutations were related to the CorA Mg²⁺ transport system. This paper reports the characterization of three additional loci in *S. typhimurium*, mutations in which impart Co²⁺ resistance. All three mutations have minimal influence on cation

Received 18 June, 1991; revised 29 July, 1991. Present addresses: †Microbial Genetics Laboratory, Institute of Molecular Medicine, ICRF Laboratories, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; ‡Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA. *For correspondence. Tel. (216) 368 6186; Fax (216) 368 3395.

uptake via the CorA system but appear to alter Mg²⁺ efflux via CorA.

Results

Isolation of insertion mutations in corB

Transposon mutagenesis was carried out on S. typhimurium LT2 using the mini-Tn10 elements, Tn10∆cam and Tn10∆kan (Wayet al., 1984). Co²⁺-resistant mutants from a pool of Tn10Acam insertions were selected on minimalglucose agar plates containing 100 µM CoCl₂. Some of these mutants were purified and shown to contain a single copy of the mini-Tn 10 element using P22 to transduce the antibiotic resistance into a clean background. In all cases, the strains also acquired a Co2+-resistant phenotype, indicating that the Co²⁺-resistant phenotype resulted from the insertion. Radial streaking showed that all of these mutants exhibited levels of resistance to Co2+ intermediate between those of the wild-type and a corA strain (MM199). The new Co2+-resistant mutants do not contain corA mutations. The chloramphenicol-resistant insertion mutants (MM400-402) were tranduced to kanamycin rsistance with P22 grown on MM199 (corA45::MudJ). All Kan^R transductants screened retained resistance to chloramphenicol, indicating that the new mutations are unlinked to corA. This locus was tentatively designated corB.

Additional Co^{2+} -resistant insertion mutants isolated from a Tn10 Δ kan pool were also shown to carry *corB* mutations, as determined by the linkage between the Tn10 Δ cam and Tn10 Δ kan transposons in the two sets of strains. P22 lysates of strains MM400, MM401, and MM402 were used to transduce a *corB18*::Tn10 Δ kan insertion mutant (MM405) to chloramphenicol resistance (Chl^R) and transductants were screened for Kan^R. All Chl^R transductants tested were sensitive to kanamycin, indicating that the Tn10 Δ kan element had been lost by homologous recombination and was therefore in the *corB* locus (Table 1).

Chromosomal map location of corB

The approximate map position of the S. typhimurium corB locus was initially determined by Hfr conjugational crosses with a number of F⁻ auxotrophic recipient strains. The corB4::Tn10∆cam mutation was transduced into Hfr strains TN2015 and TN2016. Following conjugation, prototrophic recombinants were screened for inheritance of the ChIR marker. A location near tyrA was indicated since 85% of the tyrA+ recombinants acquired resistance to chloramphenicol. The corB locus was subsequently more precisely mapped by P22 contransduction analysis. A P22 lysate of strain MM402 (corB25::Tn10Acam) was used to transduce the tyrA strain MM737 to ChIR. The corB25::Tn10∆cam was shown to be 29% linked to the tyrA gene, demonstrating that the corB locus has a chromosomal map location of about 55.5 min. Other markers within this region were subsequently analysed for possible linkage to corB. The corB locus was also linked to pheA and to the Tn10Atet elements (Kukral et al., 1989) zfe-3028, -3181, and -3222 (Table 1) thus confirming a map location of 55.5 min.

Isolation of insertion mutations in corC

Analysis of additional *cor* insertion mutants isolated from the $Tn 10\Delta cam$ transposon pool identified an additional

Donor	Recipient	M	arker	No.	Percen
genotype ^a	genotype	selected unselected		screened	linkage
corB crosses				CH -	
MM402 (corB25::Tn10Δcam)	MM739 (tyrA44)	Cam ^R	Tyr*	150	29
MM402 (corB25::Tn104cam)	MM737 (pheA35)	Cam ^R	Phe ⁺	125	17
MM405 (corB18:Tn104kan)	MM739 (tyrA44)	Kan ^R	Tyr ⁺	100	32
AK3181 (zfe3181::Tn104tet)	MM402 (corB25::Tn10Δcam)	TetR	Cam ⁶	150	61
AK3028 (zfe3028::Tn10∆tet)	MM402(corB25::Tn10Δcam)	TetR	Cam ^s	88	22
AK3222(zfe3222::Tn10∆tet)	MM402 (corB25::Tn10Δcam)	Tet ^R	Cam ^a	115	3
MM402 (corB25::Tn10∆cam)	MM405 (corB18::Tn10Δkan)	Cam ^R	Kan ^s	50	100
corC crosses					
MM404 (corC8::Tn10Δcam)	TR3681 (nag-1)	Cam ^R	Nag ⁺	200	31
MM404 (corC8::Tn10∆cam)	TT2342 (zbf-99::Tn10)	Cam ^R	Tets	150	71
MM404 (corC8::Tn10∆cam)	JF2043 (zbf-5123::Tn10)	Cam ^R	Tet ⁿ	480	60
corD crosses					
MM406 (corD13::Tn10∆tet)	TN1379 (ΔleuBCD485)	TetR	Leu+	150	14
MM406 (corD13::Tn10Atet)	TN1040 (leuD798 fol-101)	TetR	Leu+	88	13
MM406 (corD13::Tn10Atet)	TN1040 (leuD798 fol-101)	Tet ^R	Tmp ^s	176	76
MM406 (corD13::Tn104tet)	TT12897 (pyrA2414::MudJ)	TetR	Kan ^a	700	2

Table 1. Transductional crosses for mapping corB, corC, and corD

a. Only the relevant genotype is shown. Tmp^S, trimethoprim-sensitive.

cor locus, distinct from *corA* and *corB*. The Chl^R marker in these particular mutants was not linked to the *tyrA* gene, unlike *corB*, or to a Mu*dJ* insertion within *corA*. Phenotypic analysis of this class of insertion mutants, by radial streaking around a filter-paper disc containing CoCl₂, revealed their pattern of growth to be identical to that of the *corB* insertiion strains, exhibiting an intermediate level of resistance to Co²⁺. This locus was tentatively designated *corC*.

Chromosomal map location of the corC locus

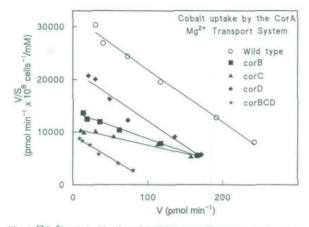
Hfr donor strains TN2015 and TN2016 were transduced to Chl^R with P22 grown on the corC8::Tn10∆cam insertion strain, MM404. Approximately 70% of purE+ recombinants were shown to be ChIR, indicating a map location for corC near 12 min. The corC locus was then more precisely mapped by P22 cotransduction. The corC locus was found to be 25% linked to the nag gene, thus placing corC at about 15 min on the chromosomal map. This location was confirmed using strain TT2342, which harbours a Tn1075% linked to the suppressor gene, supE, located at 15.5 min. The corC8:: Tn101cam insertion was 72% cotransducible with this supE-linked Tn10. In addition, corC8::Tn10∆cam was 60% linked to zbf-5123::Tn10. This latter insertion is 80% cotransducible with a putative fur-1 locus that also maps to 15 min (J. W. Foster, personal communication) (Table 1).

Isolation of an additional Co2+-resistant mutation

To determine if additional mutations conferring resistance to low concentrations of Co2+ could be isolated, 25 spontaneous Co2+-resistant mutants were selected by plating 2 × 10⁸ wild-type cells onto minimal-glucose plates containing of 125 µM CoCl₂. Resistant colonies were randomly picked and purified on Luria-Bertani (LB) agar plates. The resistance phenotype was assessed and confirmed by radial streaking around a disc of CoCl₂. P22 transductional crosses were then performed to identify corA, corB, and corC mutations in this group of spontaneous mutations. To identify corA mutations, the transduction donor carried zie-3162::Tn10Atet (Kukral et al., 1989), 25% contransducible with corA+ (Hmiel et al., 1986); tetracycline-resistant (Tet^R) transductants were selected using each of the 25 Co2+-resistant strains as recipient. Inheritance of Co2+ sensitivity at a frequency similar to that for contransduction of the insertion and corA was taken to mean that the Co2+-resistance mutation was in corA. Mutations in corB and corC were identified similarly using zfe-3181::Tn104tet (61% linked to corB+) and zbf-99::Tn10 (71% linked to corC+). Spontaneous Co2+-resistance mutations, classified by the crosses outlined above, were seen to encompass four distinct linkage groups, comprising mutations in *corA*, *corB*, *corC*, and an additional locus unlinked to any previously identified one.

Isolation of a putative insertion mutation in the corD locus and chromosomal map location

As with the *corB* and *corC* loci, the Co²⁺-resistance level conferred by spontaneous *corD* mutations was intermediate between that of the wild-type and a *corA* mutant. Since no *corD* insertion mutations had been found in the pools that had produced *corB* and *corC* mutations, another pool of insertions was constructed using $Tn10\Delta tet$. Mutants resistant to $100 \mu M Co^{2+}$ were isolated from this pool and tested for linkage to each of the previously isolated classes, *corA*, *corB*, and *corC*. One of this new group of insertions was not linked to any of these previously identified loci and was designated *corD13*::Tn10 Δ tet.


In order to ascertain the chromosomal map location of the corD13::Tn10Atet insertion mutation from strain MM406, it was transferred into the Hfr donor strains SA534 (the tetracycline-sensitive (TetS) parental strain of TN2015) and SA966 (the Tet^S parental strain of TN2016) by transduction to Tet^R. Appropriate crosses using these Hfr strains suggested that the map position of corD13::Tn10-Atet was probably near the leu biosynthetic operon at 3 min. P22 cotransduction analysis indicated that corD13::Tn10Atet was 14% linked to the leu operon, 76% linked to fol-101, and 2% linked to pyrA (Table 1), confirming a location at about 3 min (Table 1), and that it is a locus distinct from the corA, corB or corC loci. We are in the process of determining if the spontaneous Co2+-resistant mutations tentatively designated corD are the same as the corD13::Tn102tet insertion mutation, although our data suggest that this is the case.

Construction of an isogenic series of cor strains

An isogenic series of Co^{2+} -resistant mutants was constructed to determine the effect of the *corB*, *corC* or *corD* mutations, and combinations thereof, on transport via the CorA transport system. A *corBCD* triple mutant strain was constructed by initially transducing the *corC8*::Tn10 Δ cam strain MM404 to Kan^R with P22 grown on MM405 (*corB18*::Tn10 Δ kan). Transductants exhibiting both Kan^R and Chl^R were isolated (e.g. MM407) and subsequently transduced to Tet^R with a P22 lysate of MM406 (*corD13*::Tn10 Δ tet) to give a strain (MM410) harbouring insertion mutations in *corB*, *corC*, and *corD*. The construction of strains deficient in any two of these three *cor* loci (e.g. MM408 and MM409) was carried out utilizing the same set of mutations.

Quantification of Co²⁺ resistance and growth dependence in cor strains

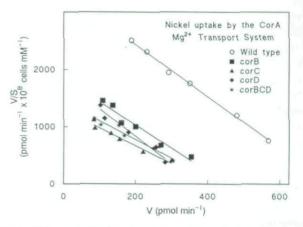
A qualitative measure of the ability of the various cor

Fig. 1. ⁵⁷Co²⁺ uptake kinetics of a wild-type strain and strains carrying *corB*, *corC*, *corD*, and *corBCD* insertion mutations. Cation uptake was measured for 5 min at room temperature as previously described (Grubbs *et al.*, 1989). Strains were LT2 (wild type), MM405 (*corB*, MM404 (*corC*)), MM406 (*corD*) and MM410 (*corBCD*). The data are plotted as V/S versus V so that the X-axis intercept is V_{max} and the slope of the line is the $-1/K_m$. A single experiment is shown. These and the results of two additional experiments are summarized in Table 2.

strains to grow in the presence of Co^{2+} in the growth medium was determined (Table 2). As expected, *corA* strains were significantly more resistant to extracellular Co^{2+} than were strains harbouring *corB*, *corC* or *corD* mutations. The results were in complete agreement with resistance properties determined from the radial streak tests (data not shown) and confirmed the intermediate resistance phenotype of the *corB*, *corC*, and *corD* strains. In addition, these results indicate that resistance to Co^{2+} is not cumulative, the level of resistance afforded by any combination of the individual *corB*, *corC* or *corD* insertion mutations being equal to that of the most resistant of the individual mutations. Thus, a *corBCD* strain is no more Co^{2+} resistant that a strain carrying only a *corC* insertion

Table 2. ${}^{57}Co^{2+}$ uptake kinetics and growth inhibition by Co^{2+} in *corB*, *corC*, and *corD* mutants.

Strain	K _m (percent of	V _{max} f wild type)	n	Minimal inhibitory Co ²⁺ concentration ^a (µM)
LT2	100 ^b	100 ^b	3	60
corA	ND	ND	-	325
corB	191 ± 13	114 ± 34	3	100
COTC	279 ±31	103 ±30	3	150
corD	102 ±3	77 ±24	3	125
corBCD	97 ±17	43 ±7	3	150


a. Shown above is the minimal concentration of CoCl₂ that will completely inhibit growth of a liquid culture of the indicated strain as described in the *Experimental procedures*. Strains harbouring *corBC* or *corCD* mutations were completely inhibited by $150 \,\mu$ M Co²⁺, while a strain harbouring *corBD* mutations was completely inhibited by $125 \,\mu$ M Co²⁺.

b. The wild-type strain LT2 had a K_m and a V_{max} of 320 pmolmin⁻¹ 10⁻⁸ cells. The minimal uptake of ${}^{57}\text{Co}^{2+}$ that could be detected is less than 1 pmol min⁻¹ 10⁸ cells⁻¹.

of LB agar plates was indistinguishable from that of a wild-type strain and required no Mg^{2+} supplementation. Growth of *corC* or *corBCD* strains in N-minimal liquid media containing $50 \,\mu M \, Mg^{2+}$ usually showed a 30–60 min lag period before entry into logarithmic growth compared with wild-type or other *cor* strains (data not shown), but the lag was variable and not evident in N-minimal liquid media containing 10 mM Mg^{2+} .

Effect of corB, corC and corD mutations on cation influx

We have previously shown that the CorA transport system can mediate uptake of Co2+ (Hmiel et al., 1986) and Ni2+ (Snavely et al., 1991) in addition to uptake of Mg2+. The ability to use Co2+ or Ni2+ is extremely useful because ²⁸Mg²⁺, the only usable radioisotope of Mg²⁺, is not routinely available and currently costs over \$30000 per mCi. Therefore the K_m and V_{max} for ⁵⁷Co²⁺ or ⁶³Ni²⁺ influx in S. typhimurium strains carrying mutations in the corB, corC, and/or corD loci were determined for comparison with uptake in wild-type cells. A representative 57Co2+ experiment comparing wild-type and mutant strains is shown in Fig. 1, while kinetic data for 57Co2+ uptake are summarized in Table 2. The V_{max} for Co²⁺ influx was essentially unaffected by the presence of single mutations in corB, corC or corD. Even in a corBCD strain, the V_{max} for Co²⁺ influx was decreased only by half. Likewise, the presence of mutations in corB, corC or corD had little effect on the Vmax of 63Ni2+ uptake, with the presence of any one or all three mutations decreasing the V_{max} by about 50% (Fig. 2 and Table 3). A single ²⁸Mg²⁺ uptake experiment (data not shown) indicated that the

Fig. 2. ⁶³Ni²⁺ uptake kinetics of a wild-type strain and a strain carrying *corBCD* insertion mutations. Cation uptake was measured for 5 min at 37°C as previously described (Grubbs *et al.*, 1989). Strains used were LT2 (wild type), MM405 (*corB*), MM404 (*corC*), MM406 (*corD*) and MM410 (*corBCD*). A single experiment is shown. The data are plotted as V/S versus V so that the X-axis intercept is V_{max} and the slope of the line is the $-1/K_m$. These and the results of additional experiments are summarized in Table 3.

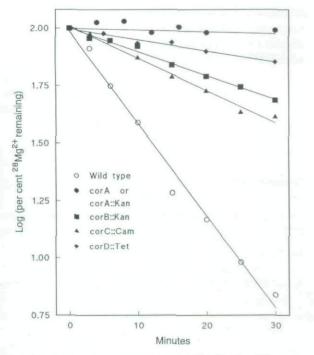


Fig. 3. Effect of insertions at single cor loci on 28Mg2+ efflux. Efflux was measured at 37°C in strains LT2 (wild type), MM199 (corA), MM405 (corB), MM404 (corC), and MM406 (corD) as described (Grubbs et al., 1989). The data shown are the averages of at least three experiments for each strain, except corD, for which a single experiment is shown. Efflux was measured simultaneously in four distinct strains grown and incubated in ²⁸Mg²⁺ in parallel. Variability was less than ±7% at each point. Excluding the data for MM199 because of the lack of detectable efflux, the correlation coeficients derived from linear regression analysis were >0.96 for each individual experiment and >0.97 for the composite line shown. An exception is the datum for MM406, where the T_{12} in the presence of corD::Tn10Atet was rather variable. In five experiments, the T1/2 ranged from 20-90 min. While within each individual experiment the correlation coefficient for the linear regression line was >0.95, only a single representative experiment is shown because of the overall variability. Some of the data for strain MM199 were obtained in separate experiments, one of which has been published (Snavely et al., 1989b).

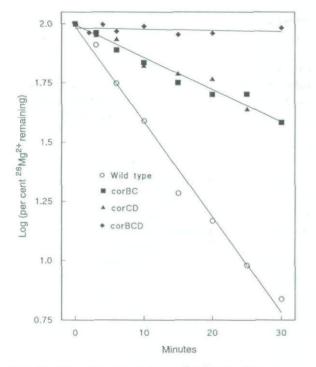
 V_{max} for Mg²⁺ influx was not significantly altered in a *corBCD* strain.

The *cor* mutations also had minimal effects on K_m . For ⁶³Ni²⁺ influx, the presence of any one or all mutations did not alter K_m significantly (Table 3). In slight contrast, the K_m for ⁵⁷Co²⁺ uptake was increased twofold in a *corB* strain, threefold in a *corC* strain, and was unaffected in a *corD* strain. Furthermore, despite the small but reproducible change in K_m in *corB* or *corC* strains, the K_m for ⁵⁷Co²⁺ uptake in *corBCD* strains was unaltered from that observed in the wild type (Table 2). Additional experiments indicated that Mg²⁺ inhibited ⁶³Ni²⁺ influx in *corB*, *corC*, *corD* or *corBCD* strains with a K_i identical to that observed for a wild-type strain (data not shown): this is an indication that the K_m for Mg²⁺ uptake was unaltered by the presence of these mutations.

These results show that the presence of insertion

mutations at the *corB*, *corC* and/or *corD* loci have minimal effects on cation influx via the CorA transport system. Further, influx of Mg²⁺ requires only the presence of a wild-type allele of *corA*. This is presumptive evidence that wild-type alleles of *corB*, *corC* and/or *corD* are not required for expression or functioning of the *corA* gene product.

Effect of corB, corC and corD mutations on cation efflux


Since the effect of these newly identified cor mutations on cation uptake was relatively minor, the role of the gene products of these loci in the functioning of the CorA transport system remained unclear. Neither 57Co2+ nor ⁶³Ni²⁺ are useful for measurement of efflux through the CorA transport system, probably because these transition metal cations bind extremely tightly to proteins and nucleic acids within the cell. Consequently, 28Mg2+ was used to characterize efflux through the CorA system. Strains harbouring insertion mutations in corB, corC or corD showed a T1/2 for Mg2+ efflux of 30-60 min compared with a T1/2 of 9-10min for wild-type cells (Fig. 3). As previously reported, a mutation in corA alone abolished efflux (Fig. 3 and Snavely et al., 1989b). Interestingly, a strain harbouring mutations at both the corB and corC loci had no additional effect on the rate of ²⁸Mg²⁺ efflux (Fig. 4.). Similarly, simultaneous mutations in both corC and corD also had no greater effect than a mutation in corC alone (Fig. 4). In contrast to these relatively modest effects on efflux of single or double mutatins, a strain harbouring mutations at all three loci (corB, corC, and corD) showed complete abolition of ²⁸Mg²⁺ efflux (Fig. 4). Thus, Mg²⁺ efflux requires a wild-type allele of corA and at least one wild-type allele amongst corB, corC or corD.

 Mg^{2+} efflux via the CorA transport system requires relatively high extracellular Mg^{2+} concentrations. At low extracellular Mg^{2+} concentrations, the efflux rate is greatly diminished in *E. coli* (Silver and Clark, 1971) and is undetectable in *S. typhimurium* (Snavely *et al.*, 1989b). In addition, previous work using *E. coli* had demonstrated that Mn^{2+} could stimulate Mg^{2+} efflux (Silver and Clark, 1971). We therefore tested the ability of other divalent

Table 3. 63Ni2+	uptake	kinetics in	corB,	corC,	and	corD mutants.
-----------------	--------	-------------	-------	-------	-----	---------------

Strain	Km	V _{max}	n		
	(percent of v	vild type)			
LT2	100 ^a	100 ^a	3		
corA	ND	ND	—		
corB	90	62	2		
CORC	116	49	2		
corD	92	46	2		
corBCD	126 ±23	58 ±10	3		

a. The wild-type strain LT2 had a K_m of 200 μ M and a V_{max} of 700 pmol min⁻¹ 10⁸ cells⁻¹. The minimal uptake of ⁶³Ni²⁺ that could be detected is about 1 pmol min⁻¹ 10⁸ cells⁻¹.

Fig. 4. Effect of multiple *cor* mutations on ²⁸Mg²⁺ efflux. Efflux was measured in strains LT2 (wild type), MM407 (*corBC*), MM408 (*corCD*) and MM410 (*corBCD*) as described previously (Grubbs *et al.*, 1989) and in the legend to Fig. 3. The data for the wild-type strain are identical to those in Fig. 3. The data for MM407 and MM408 are the averages of two independent experiments, while those for MM410 are for three experiments. Variability was less than $\pm 5\%$ at each point. The correlation coefficients derived from linear regression analysis was >0.96 for each individual experiment and >0.97 for the average line shown, except for the data with MM410 because of the lack of detectable efflux. Efflux was not measured in a *corBD* strain because MM409 had not been constructed when we were able to obtain a shipment of ²⁸Mg²⁺.

cations to stimulate ²⁸Mg²⁺ efflux. The data in Fig. 5 indicate that high extracellular concentrations of Mg²⁺ (and to a lesser degree, Mn²⁺) can stimulate ²⁸Mg²⁺ efflux. In contrast, neither Co²⁺ nor Ni²⁺ was able to stimulate ²⁸Mg²⁺ efflux, even though, at the concentrations used, Co²⁺ and Ni²⁺ influx via the CorA system was essentially maximal. This result serves to dissociate the ability of Mg²⁺ to stimulate efflux from its actual transport through the CorA transport system.

The ability of Mg²⁺ to stimulate efflux via CorA is also a function of extracellular Mg²⁺ concentration. In the absence of added Mg²⁺, no ²⁸Mg²⁺ efflux is evident in a wild-type strain (Fig. 6), whereas with the addition of increasing concentrations of extracellular Mg²⁺, efflux occurs linearly with time at a rate that increases as the extracellular Mg²⁺ concentration increases (Fig. 6). Since the rate of efflux was linear at different Mg²⁺ concentrations, the experiment shown in Fig. 7 was feasible wherein the amount of efflux at a single time point was measured as a function of extracellular Mg²⁺ concentration. Our

interpretation of these data is that the phenotypic effect of single *corB*, *corC*, and *corD* mutations is not actually to abolish efflux but to greatly increase the extracellular Mg²⁺ concentration required to initiate efflux via CorA. In the *corBCD* strain, efflux cannot be stimulated except at extremely high extracellular Mg²⁺ concentrations. However, this effect in the *corBCD* strain may not be completely specific since 100 mM extracellular Mg²⁺ also stimulates slight ²⁸Mg²⁺ efflux from a *corA* strain.

Discussion

Composition of the CorA Mg²⁺ transport system

Data presented above indicate that the CorA Mg^{2+} transport of *S. typhimurium* is influenced by four genetic loci: *corA, corB, corC*, and *corD*. The requirement for *corA* is well established (Hmiel *et al.*, 1986; 1989). The evidence in this and previous reports strongly indicates that the *corA* gene product is a protein that mediates the movement of Mg^{2+} across the membrane. First, V_{max} for transport is increased, without any effect on K_m , when the CorA protein is expressed from a multicopy plasmid (Hmiel *et al.*, 1986). Second, Mg^{2+} influx still occurs in a *corBCD* strain. Thus, the single gene product of Mg^{2+} .

The basis for the Co²⁺-resistance phenotype of *corB*, *corC* and *corD* mutations is not completely clear. It seems likely, *a priori*, that Co²⁺ resistance would be due to

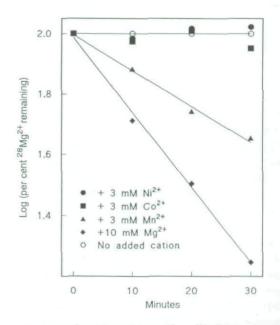
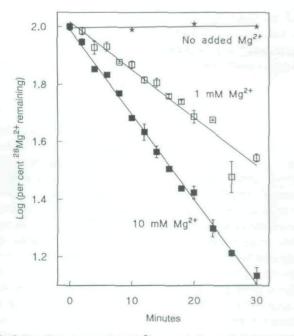
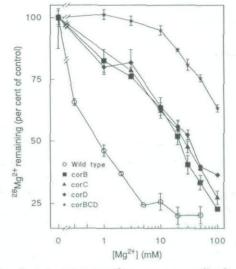


Fig. 5. Effects of Mg²⁺, Mn²⁺, Co²⁺, and Ni²⁺ on ²⁸Mg²⁺ efflux from a wild-type strain. Efflux was measured in strain LT2 as described (Grubbs *et al.*, 1989), except that efflux was initiated by resuspension of the cells in 10 mM Mg²⁺ or 3 mM of either Mn²⁺, Co²⁺, or Ni²⁺.




Fig. 6. The effect of extracellular Mg²⁺ concentration on the rate of ²⁸Mg²⁺ efflux. Efflux was measured in strain LT2 as described (Grubbs *et al.*, 1989) except that efflux was initiated by resuspension of the cells in 0, 1 or 10 mM Mg²⁺.

altered transport of the cation, as is clearly the case for corA mutations (Hmiel et al., 1986; Snavely et al., 1989b). Growth inhibition by Co2+ probably results from interactions with a variety of target sites. Co2+ binds tightly to most proteins and to nucleotides, including ATP. It is thus difficult to imagine a single mutation that would diminish the affinity of all of these targets for Co2+. The level of resistance conferred by these mutations is intermediate between that of the wild type and that of a corA strain. The findings that corB, corC and corD have small effects on cation influx, larger effects on cation efflux, and that a corBCD strain is completely deficient in Mg2+ efflux suggest that these mutations affect the intracellular concentration of Mg²⁺ and that they do so by affecting the CorA transport system. A Co2+-resistant phenotype might then occur because an increased intracellular Mg2+ concentration would better compete with Co2+ for relevant sites. Alternatively, and more plausibly, diminished capacity for Co2+ influx might be sufficient for a Co2+resistant phenotype by virtue of the smaller amount of Co²⁺ entering the cell. This interpretation is in accord with the influx data reported here. The decrease in Co²⁺ influx for strains carrying corB, corC, and corD mutations is similar; likewise, all three mutations confer a similar degree of Co²⁺ resistance. Furthermore, while a corBCD strain shows no additional deficit in Co2+ influx relative to a strain carrying only one such cor mutation, a corBCD strain does not have a greater degree of Co2+ resistance.

It is not clear how the mutations described in this paper relate to the previously reported corB locus in E. coli (Park et al., 1976) which was cotransducible with the pyrB gene (mapping at about 98 min on the S. typhimurium chromosome). In S. typhimurium, the mgtA Mg2+ transport system maps to a chromosomal location analogous to the E. coli corB locus (Hmiel et al., 1989). However, no mutations at mgtA confer a Co²⁺-resistance phenotype. Moreover, mutations at the E. coli corB locus apparently alter expression of the corA gene product and confer Ca2+ sensitivity, neither of which has been observed with mgtA, corB, corC, or corD mutations in S. typhimurium. It is possible that the E. coli corB locus is not in an analogous position on the S. typhimurium chromosome. This implies that one of the S. typhimurium cor loci described in this paper may be similar to the E. coli corB locus, or that we have not yet identified the appropriate S. typhimurium cor locus; additional work will be required to clarify this point.

Possible components of the CorA system and their functions

The transport data indicate that the *corA* gene product (CorA) is both necessary and sufficient for mediation of Mg^{2+} influx. Since CorA is capable of mediating both influx

Fig. 7. The effect of extracellular Mg²⁺ concentration on ²⁸Mg²⁺ efflux in strains carrying insertions in *corB, corC*, and/or *corD*. Efflux was measured as described (Grubbs *et al.*, 1989) in strains LT2, MM405 (*corB*), MM404 (*corC*), MM406 (*corD*) or MM410 (*corBCD*), except that cells were resuspended in buffer containing no added Mg²⁺. At t=0, efflux was initiated by the addition of 3.6ml of cells to 0.4ml of buffer containing 10× the final indicated Mg²⁺ concentration. At t=20min, 1.0ml triplicate samples were filtered to determine the ²⁸Mg²⁺ remaining in the cells. The rate of ²⁸Mg²⁺ efflux at 1 or 10mM extracellular Mg²⁺ is linear with time for at least 40min under these conditions. The amount of extracellular Mg²⁺. The data are plotted as percentages of the cell-associated ²⁸Mg²⁺ present at t=0.

and efflux, the role(s) of the gene products of the corB, corC, and corD loci in this transport system is(are) unclear. Their absence has no significant effect on Km or Vmax for the influx of ⁵⁷Co²⁺, ⁶³Ni²⁺, or ²⁸Mg²⁺ via CorA. Further, in a strain harbouring mutations at all three new cor loci, the residual level of Mg²⁺ uptake by CorA at extracellular Mg²⁺ concentrations approximating the K_m for Mg²⁺ is still more than an order of magnitude greater than the level of uptake mediated by either the MatA or the MatB Ma2+ transport system (Snavely et al., 1991). Therefore, a strain carrying mutations in corB, corC, and corD is in no way limited in its ability to accumulate Mg2+ under any normal (laboratory) growth conditions. Thus none of these three loci seem to be intimately involved in or required by the influx process. Conversely, however, these three new Co2+-resistance loci seem integral to the ability of corA to mediate and/or regulate Mg2+ efflux. While individual mutations at the corB, corC or corD loci have no effect or only moderate effects on the rate of Mg2+ efflux, their combination results in complete abolition of Mg2+ efflux. Nonetheless, since a wild-type allele of corA is still present, Mg2+ influx can continue. Thus, CorA is necessary but not sufficient for mediation of Mg²⁺ efflux; the presence of a wild-type allele of at least one of the corB, corC or corD loci is additionally required for Mg2+ efflux.

Since *corA* alone is required for Mg^{2+} influx, the energy transduction functions of this transport system which are required for influx must also reside within the CorA protein. However, little can be concluded currently about the specific roles of the individual *corB*, *corC* or *corD* gene products. At least two functions could reside within the products of these three loci: (i) a coupling function between efflux of cation and an energy source, and (ii) a cation sensor function.

An energy coupling function amongst corB, corC, and corD is implied because efflux of Mg2+ requires transport against the electrochemical gradient. Thus, efflux must be coupled either to ATP hydrolysis or to transport of another ion with its electrochemical gradient. Studies are currently underway to delineate these possibilities further using unc mutations to uncouple ATP from the H⁺ gradient. A cation sensor function is implied by the gating of efflux by extracellular cation concentration. At an extracellular Mg^{2+} concentration equal to the K_m for influx, no efflux is detectable. Thus, at an extracellular Mg2+ concentration equal to 50% of the maximal influx rate, corB, corC and/or corD may interact with corA in such a manner as to prevent Mg²⁺ efflux. Only at relatively high extracellular Mg²⁺ concentrations does Mg2+ efflux become 'activated'. A sensor or activation function is also implied by the ability of Mg²⁺ and Mn²⁺ but not Co²⁺ or Ni²⁺, to stimulate or 'activate' 28 Mg2+ efflux. Since at an extracellular concentration of 3 mM, both Co2+ and Ni2+ are being transported at a maximal rate by the corA gene product, it is not the act of transport through the CorA protein that regulates activation of efflux. Rather, the inability of Co²⁺ and Ni²⁺ to stimulate ²⁸Mg²⁺ efflux suggests that they either do not interact with the putative Mg²⁺ sensor or act as inhibitors.

Comparison with other cation transport systems

The most obvious system with which CorA can be compared is the Trk K⁺ transport system of E. coli (Bakker et al., 1987; Walderhaug et al., 1987; Bossemeyer et al., 1991; Dosch et al., 1991) which is encoded and/or regulated by the gene products of four unlinked loci: trkA, trkE, trkG, and trkH. The Trk transport system, however, mediates only influx of K⁺. The effect of mutations at the trkA, trkE, or trkH loci reduces the Vmax of K⁺ uptake by about a factor of 10 without having any significant effect on the Km. In each case, a second mutation at another trk locus produces a further reduction in the Vmax of K⁺ uptake. TrkA is a peripheral membrane protein that is loosely bound to the cytoplasmic side of the E. coli inner membrane and requires functional trkG, trkH, and/or trkE gene products for its anchorage to the cytoplasmic membrane (Bossemeyer et al., 1989). Thus, while the CorA and Trk systems are alike in being influenced by gene products of multiple unlinked loci, the transport characteristics (exchange versus influx) and the effect of mutations at individual or multiple loci differ.

K⁺ efflux in *E. coli* is mediated by two distinct efflux systems encoded by the *kefB* and *kefC* loci (Bakker *et al.*, 1987; Walderhaug *et al.*, 1987; Meury and Robin, 1990). These loci apparently encode two different glutathionegated K⁺ channels, neither of which appear to have any relationship to the Trk K⁺ influx system. The data presented above indicate that the gene products of the *corB*, *corC* or *corD* loci require a wild-type allele of *corA* to mediate efflux; therefore *corB*, *corC*, and/or *corD* do not represent an independent Mg²⁺ efflux pathway comparable to the K⁺ efflux loci, *kefB* and *kefC*. Together, these data indicate that the CorA Mg²⁺ transport system represents a novel and, to date, unique example of a cation membrane transport system.

Experimental procedures

Bacterial strains and growth media

All strains used in this study are derivatives of *S. typhimurium* LT2 unless otherwise stated; their genotype and sources are listed in Table 4. Bacteria were grown at 37°C with aeration in LB medium or on LB agar plates (Miller, 1972), except where stated otherwise. Antibiotics were used at the following concentrations: ampicillin (Amp), 100 μ g ml⁻¹; kanamycin sulphate (Kan) , 50 μ g ml⁻¹; tetracycline (Tet), 25 μ g ml⁻¹; chloramphenicol (Chl), 20 μ g ml⁻¹. In minimal agar plates or broth, added antibiotic concentrations were one-half of the above levels. Minimal medium was based on

Table 4. Bacterial strains used.

Strain	Genotype	Source/ /Reference
AK3028	As TN2540, <i>zfe-3028</i> ::Tn10∆tet	Kukral et al
		(1989)
AK3181	As TN2540, <i>zfe-3181</i> ::Tn10∆tet	Kukral <i>et al</i> (1989)
AK3222	As TN2540, <i>zfe-3222</i> ::Tn10∆tet	Kukral <i>et al</i> (1989)
MM199	∆leuBCD485, corA45::MudJ	Snavely et al (1989b)
MM400	corB4::Tn10∆cam	This study
MM401	corB24::Tn10Acam	This study
MM402	corB25::Tn10Acam	This study
MM403	corC1::Tn10Acam	This study
MM404	corC8::Tn10Acam	This study
MM405	corB18::Tn10∆kan	This study
MM406	corD13::Tn10Atet	This study
MM407	corB18::Tn10Akan, corC8::Tn10Acam	This study
MM408	corC8::Tn10Acam, corD13::Tn10Atet	This study
MM409	corB18::Tn10∆kan, corD13::Tn10∆tet	This study
MM410	corB18::Tn102kan, corC8::Tn102cam,	
	corD13::Tn10∆tet	This study
MM737	tyrA44	C. G. Miller
MM739	pheA35	C. G. Miller
JF2043	bciA1::MudJ, fur-1, zbf-5123::Tn10	J. F. Foster
SA534	HfrK4 serA13, rfa-3058	K. E. Sanderson
SA966	HfrK19 leuBCD39, ara-7	K. E. Sanderson
TN1040	leuD798, fol-101,zji-842::Tn5	C. G. Miller
TN1379	$\Delta leuBCD485$	C. G. Miller
TN2015	HfrK4 serA13, rfa-3058, zxx-888::Tn10	C. G. Miller
TN2016	HfrK19 leuBCD39, ara-7, zxx888::Tn10	C. G. Miller
TN2369	proAB47/F' 128 pro ⁺ , lac ⁺ , zzf-1831::Tn10 Δtet (TT10423)	J. Roth
TN2370	proAB47/F'128, pro+, lac+, zzf-1834::Tn10	
	Δkan (TT10426)	J. Roth
TN2371	proAB47/F' ₁₂₈ , pro ⁺ , lac ⁺ , zzf-1837::Tn10 Δcam (TT10605)	J. Roth
TN2372	LT2/pNK972 (TT10427)	J. Roth
TN2540	metE551, metA22, hisC47(Am), trpB2, ilv-	0. 1001
1142.040	452, rpsL120, fla-66, xyl-404, galE496,	
	hsdL6(r ^{-m+}) hsdSA29(r ^{-m+}) (DB2546)	R. Maurer
TR3681	his-3050, nag-1	J. Roth
TT2342	zbf99::Tn10, supE(su2), hisC527, leu-414	J. Roth
TT12897	pyrA2414::MudJ	J. Roth

the N medium of Nelson and Kennedy (Nelson and Kennedy, 1971), supplemented with 0.4% glucose, 0.1% casamino acids and $50\,\mu M$ MgSO₄. For minimal agar plates, the addition of MgSO₄ was omitted.

Quantification of Co²⁺ resistance in the cor strains

Growth of the isogenic series of *corB/corC/corD* strains was monitored in minimal-glucose medium containing 0.1% casamino acids, 50 μ M MgSO₄ and different concentrations of CoCl₂. Cultures were initially inoculated with 2 × 10⁷ cells that had been washed and resuspended in 0.85% NaCl. Resistance was then determined by growth of the strain, following a 16h incubation at 37°C. *S. typhimurium* strains LT2 and MM199 were grown in parallel to assess growth inhibition by Co²⁺ for both wild-type and *corA* cells, respectively. The minimal inhibitory concentration of Co²⁺ was that concentration which completely prevented growth.

Genetic techniques

Transductions were carried out using a mutant (*HT*105/1*int*201) of the high-frequency, generalized transducing bacteriophage, P22. Hfr conjugation experiments were performed as described by Miller (Miller, 1972), by the direct plating of 2×10^8 cells of the Hfr donor strain and 2×10^8 cells of an appropriate F⁻auxotrophic recipient strain onto minimal-glucose plates. Prototrophic recombinants were isolated after 36h of incubation at 37°C. The isolation of a number of *S. typhimurium* strains carrying randomly spaced Tn10 Δ tet chromosomal insertions and their use for genetic mapping has been previously described (Kukral *et al.*, 1989).

Isolation of Co²⁺-resistance insertion mutations

Random transposition of the mini-Tn10 derivatives Tn10 Δ tet, Tn10 Δ kan, and Tn10 Δ cam (Way *et al.*, 1984) was achieved by transducing a recipient strain that harbours the transposase helper plasmid, pNK972 (TN2372), to antibiotic resistance with P22 lysates of TN2369, TN2370, and TN2371, as described (Davis *et al.*, 1980). Approximately 10 000–12 000 resistant colonies were pooled in each case and a P22 transducing lysate prepared on the pools. These P22 lysates were used to transduce a suitable recipient strain (LT2), lacking the helper plasmid. This secondary pool of stable insertions was then used for selecting Co²⁺-resistant mutants.

Selection of Co2+-resistant mutants

Mutations conferring resistance to Co^{2+} were selected on minimal-glucose plates containing 80–150 μ M CoCl₂. Cobalt resistance was also assessed on minimal-glucose plates by radial streaking of colonies around a 6-mm-diameter filter-paper disc impregnated with 10 μ I of 100 mM CoCl₂. Sensitivity of strains to cobalt was determined by lack of growth within the area immediately surrounding the disc. A streak of a *corA* strain typically grows to the edge of the paper disc, while a streak of a wild-type strain grows no closer than 2 cm. The *corB*, *corC*, and *corD* mutations identified in this paper had an intermediate level of Co²⁺ resistance and grew to within about 1 cm of the disk. Auxotrophic requirements were identified by radial streaking around a filter-paper disc impregnated with 1 μ mol of the appropriate amino acid.

Cation transport assay

Uptake and kinetic analysis of ${}^{57}\text{Co}{}^{2+}$ or ${}^{63}\text{Ni}{}^{2+}$ and the efflux of ${}^{28}\text{Mg}{}^{2+}$ were determined as previously described (Hmiel *et al.*, 1986; Grubbs *et al.*, 1989). For influx assays, overnight cultures were grown in N-minimal medium containing 1 mM Mg ${}^{2+}$. A 1:50 dilution was made into fresh N-minimal medium containing 1 mM Mg ${}^{2+}$ and cells grown to an OD_{600nm} of 2–4 before being washed twice in N-minimal medium without added Mg ${}^{2+}$. Cells were finally resuspended in the same medium without Mg ${}^{2+}$ at an OD_{600nm} of about 2.0 for use in transport assays. The strains used to quantify cation uptake via the CorA system also harboured wild-type alleles of *mgtA* and *mgtB* and thus carried functional MgtA and MgtB Mg ${}^{2+}$ transport systems. However, as Co ${}^{2+}$ is not taken up by either the MgtA or the MgtB system, uptake of ${}^{57}\text{Co}{}^{2+}$ is a measure of the CorA transport system only. Moreover, since

transcription of *mgtA* and *mgtB* and thus expression of the MgtA and MgtB transport systems are severely repressed by growth in high extracellular Mg^{2+} concentrations (Snavely *et al.*, 1989b; 1991), more than 99% of ⁶³Ni²⁺ uptake under these growth conditions occurs via the CorA system.

Acknowledgements

We thank Jane Florer and Sue Gura for assistance with the transport studies and numerous discussions, Jennifer Banks, Jessica Galazka and Shauna Trower for technical assistance with the mapping studies, and Dr J. W. Foster for sharing unpublished data. M.G. is a recipient of a postdoctoral fellowship from the Northeast Ohio Affiliate, American Heart Association. This work was supported by U.S.P.H.S. grants GM26340 and GM39447.

References

- Bakker, E.P., Booth, I.R., Dinnbier, V., Epstein, W., and Gajewski, A. (1987) Evidence for multiple K⁺ export systems in *Escherichia coli. J Bacteriol* **169**: 3743–3749.
- Bossemeyer, D., Borchard, A., Dosch, D.C., Helmer, G.C., Epstein, W., Booth, I.R., and Bakker, E.P. (1989) K⁺-transport protein TrkA of *Escherichia coli* is a peripheral membrane protein that requires other *trk* gene products for attachment to the cytoplasmic membrane. *J Biol Chem* **264**: 16403–16410.
- Davis, R.W., Botstein, D., and Roth, J.R. (1980) Advanced Bacterial Genetics. Cold Spring Harbour, New York: Cold Spring Harbor Laboratory Press.
- Dosch, D.C., Helmer, G.C., Sutton, S.H., Salvacion, F.F., and Epstein, W. (1991) Genetics analysis of potassium transport loci in *Escherichia coli*: evidence for three constitutive systems mediating uptake of potassium. *J Bacteriol* **173**: 687–696.
- Grubbs, R.D., Snavely, M.D., Hmiel, S.P., and Maguire, M.E. (1989) Magnesium transport in eukaryotic and prokaryotic cells using magnesium-28 ion. *Meth Enzymol* **173**: 546–563.
- Hmiel, S.P., Snavely, M.D., Miller, C.G., and Maguire, M.E. (1986) Magnesium transport in *Salmonella typhimurium*: characterization of magnesium influx and cloning of a transport gene. J Bacteriol **168**: 1444–1450.
- Hmiel, S.P., Snavely, M.D., Florer, J.B., Maguire, M.E., and Miller, C.G. (1989) Magnesium transport in Salmonella typhimurium:

genetic characterization and cloning of three magnesium transport loci. *J Bacteriol* **171:** 4742–4751.

- Kukral, A.M., Strauch, K.L., Maurer, R.A., and Miller, C.G. (1989) Genetic analysis in *Salmonella typhimurium* with a small collection of randomly spaced insertions of transposon Tn10Δ. *J Bacteriol* **1987**: 1787–1793.
- Lusk, J.E., and Kennedy, E.P. (1969) Magnesium transport in Escherichia coli. J Bacteriol 244: 1653–1655.
- Meury, J., and Robin, A. (1990) Glutathione-gated K⁺ channels of *Escherichia coli* carry out K⁺ efflux controlled by the redox state of the cell. Arch Microbiol **154**: 475–482.
- Miller, J.H. (1972) *Experiments in Bacterial Genetics*. Cold Spring Harbor New York: Cold Spring Harbor Laboratory Press.
- Nelson, D.L., and Kennedy, E.P. (1971) Magnesium transport in *Escherichia coli*. Inhibition by cobaltous ion. *J Biol Chem* 246: 3042–3049.
- Park, M.H., Wong, B.B., and Lusk, J.E. (1976) Mutants in three genes affecting transport of magnesium in *Escherichia coli*: physiology and genetics. *J Bacteriol* **126**: 1096–1103.
- Silver, S. (1969) Active transport of magnesium in Escherichia coli. Proc Natl Acad Sci USA 62: 764–771.
- Silver, S., and Clark, D. (1971) Magnesium transport in Escherichia coli. Interference by manganese with magnesium metabolism. J Biol Chem 246: 569–576.
- Snavely, M.D., Florer, J.B., Miller, C.G., and Maguire, M.E. (1989a) Magnesium transport in *Salmonella typhimurium*: expression of cloned genes for three distinct Mg²⁺ transport systems. *J Bacteriol* **171**: 4752–4760.
- Snavely, M.D., Florer, J.B., Miller, C.G., and Maguire, M.E. (1989b) Magnesium transport in *Salmonella typhimurium*: ²⁸Mg²⁺ transport by the CorA, MgtA, and MgtB systems. *J Bacteriol* **171**: 4761–4766.
- Snavely, M.D., Gravina, S., Cheung, T., Miller, C.G., and Maguire, M.E. (1991) Magnesium transport in *Salmonella typhimurium*: regulation of *mgtA* and *mgtB* expression. *J Biol Chem* 266: 824–829.
- Walderhaug, M.O., Dosch, D.C., and Epstein, W. (1987) Potassium transport in bacteria. In *Ion Transport in Prokaryotes*. Rosen, B.P., and Silver, S. (eds). San Diego: Academic Press, pp. 85–130.
- Way, J.C., Davis, M.A., Morisato, D., Roberts, D.E., and Kleckner, N. (1984) New Tn10 derivatives for transposon mutagenesis and for construction of *lacZ* operon fusions by transposition. *Gene* **32**: 369–379.

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.